Bio- and bioinspired nanomaterials / / edited by Daniel Ruiz-Molina, Fernando Novio, and Claudio Roscini
| Bio- and bioinspired nanomaterials / / edited by Daniel Ruiz-Molina, Fernando Novio, and Claudio Roscini |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2015 |
| Descrizione fisica | 1 online resource (487 p.) |
| Disciplina | 572.51 |
| Soggetto topico |
Bioinorganic chemistry
Inorganic compounds Nanostructured materials |
| ISBN |
3-527-67584-1
3-527-67582-5 3-527-67585-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Bio- and Bioinspired Nanomaterials; Contents; List of Contributors; Foreword; Preface; Part I: Bionanomaterials; 1 Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties; 1.1 Introduction; 1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles; 1.2.1 Optical Properties of Gold and Silver Nanoparticles; 1.2.2 Electronic Properties of Gold and Silver Nanoparticles; 1.3 Synthesis of Gold and Silver Core Nanoparticles; 1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents; 1.5 Some Applications of Gold and Silver Nanoparticles
AcknowledgmentsReferences; 2 Ceramic Smart Drug Delivery Nanomaterials; 2.1 Introduction; 2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles; 2.3 Mesoporous Silica Nanoparticles; 2.4 Calcium Phosphate Nanoparticles; 2.5 Carbon Allotropes; 2.6 Iron Oxide Nanoparticles; References; 3 Polymersomes and their Biological Implications; 3.1 Introduction; 3.2 Self-Assembly of Amphiphiles; 3.3 Polymersome - The Synthetic Analog of a Liposome; 3.3.1 Polymersome Preparation Methods; 3.3.1.1 Batch Methods; 3.3.1.2 Continuous Flow Methods; 3.3.2 Characterization of Polymersomes 3.4 Polymersomes as Drug Delivery Devices3.4.1 Tuning Membrane Properties and Controlling the Release; 3.4.1.1 pH-Responsive Polymersomes; 3.4.1.2 Hydrolysis of Polymersomes Built from Biodegradable Polymers; 3.4.1.3 GSH-Responsive (Redox) Vesicles; 3.4.1.4 Temperature-Responsive Polymers; 3.4.1.5 Magnetic Release; 3.4.2 Surface Functionalization and Targeting Strategies; 3.5 Embedding Channel Proteins in Artificial Polymer Membranes and Creating New Applications; 3.6 Conclusions and Outlook; List of Abbreviations; References; 4 MOFs in Pharmaceutical Technology; 4.1 Introduction 4.2 Metal-Organic Frameworks4.2.1 Description; 4.2.2 Synthesis, Formulation, and Functionalization/Shaping; 4.2.2.1 Synthesis and Formulation/Shaping; 4.2.2.2 Functionalization; 4.2.3 Stability and Toxicity; 4.3 MOFs for Therapeutics; 4.3.1 BioMOFs; 4.3.2 Active Ingredient Adsorption and Release from MOFs; 4.3.2.1 Drugs; 4.3.2.2 Cosmetics; 4.3.3 Understanding; 4.3.3.1 Encapsulation; 4.3.3.2 Release; 4.3.4 Theranostics; 4.3.5 Efficacy; 4.4 Conclusions; List of Abbreviations; References; 5 Amorphous Coordination Polymer Particles for Biomedicine; 5.1 Introduction 5.2 Interaction of Nanoplatforms with the Biological Environment5.3 CPPs as Realistic Alternative to Classical Nanosystems; 5.3.1 Encapsulation Systems Based on CPPs; 5.3.2 Active Metal-Organic Units; 5.3.2.1 Active Metal Ions; 5.3.2.2 Drugs as Bridging Ligands; 5.3.2.3 Active Complexes; 5.3.3 Smart Delivery Systems; 5.3.4 Bioimaging; 5.3.5 Biocompatibility of CPPs; 5.4 Conclusion and Future Challenges; References; 6 Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery; 6.1 Introduction; 6.2 Principles of Magnetically Induced Heat Generation 6.3 Synthesis of MNPs and their Heat Performance |
| Record Nr. | UNINA-9910139146803321 |
| Weinheim, Germany : , : Wiley-VCH, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bio- and bioinspired nanomaterials / / edited by Daniel Ruiz-Molina, Fernando Novio, and Claudio Roscini
| Bio- and bioinspired nanomaterials / / edited by Daniel Ruiz-Molina, Fernando Novio, and Claudio Roscini |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2015 |
| Descrizione fisica | 1 online resource (487 p.) |
| Disciplina | 572.51 |
| Soggetto topico |
Bioinorganic chemistry
Inorganic compounds Nanostructured materials |
| ISBN |
3-527-67584-1
3-527-67582-5 3-527-67585-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Bio- and Bioinspired Nanomaterials; Contents; List of Contributors; Foreword; Preface; Part I: Bionanomaterials; 1 Synthesis of Colloidal Gold and Silver Nanoparticles and their Properties; 1.1 Introduction; 1.2 Physical and Chemical Properties of Gold and Silver Nanoparticles; 1.2.1 Optical Properties of Gold and Silver Nanoparticles; 1.2.2 Electronic Properties of Gold and Silver Nanoparticles; 1.3 Synthesis of Gold and Silver Core Nanoparticles; 1.4 Transfer to Aqueous Media of Gold and Silver Nanoparticles from Organic Solvents; 1.5 Some Applications of Gold and Silver Nanoparticles
AcknowledgmentsReferences; 2 Ceramic Smart Drug Delivery Nanomaterials; 2.1 Introduction; 2.2 Biodistribution, Toxicity, and Excretion of Nanoparticles; 2.3 Mesoporous Silica Nanoparticles; 2.4 Calcium Phosphate Nanoparticles; 2.5 Carbon Allotropes; 2.6 Iron Oxide Nanoparticles; References; 3 Polymersomes and their Biological Implications; 3.1 Introduction; 3.2 Self-Assembly of Amphiphiles; 3.3 Polymersome - The Synthetic Analog of a Liposome; 3.3.1 Polymersome Preparation Methods; 3.3.1.1 Batch Methods; 3.3.1.2 Continuous Flow Methods; 3.3.2 Characterization of Polymersomes 3.4 Polymersomes as Drug Delivery Devices3.4.1 Tuning Membrane Properties and Controlling the Release; 3.4.1.1 pH-Responsive Polymersomes; 3.4.1.2 Hydrolysis of Polymersomes Built from Biodegradable Polymers; 3.4.1.3 GSH-Responsive (Redox) Vesicles; 3.4.1.4 Temperature-Responsive Polymers; 3.4.1.5 Magnetic Release; 3.4.2 Surface Functionalization and Targeting Strategies; 3.5 Embedding Channel Proteins in Artificial Polymer Membranes and Creating New Applications; 3.6 Conclusions and Outlook; List of Abbreviations; References; 4 MOFs in Pharmaceutical Technology; 4.1 Introduction 4.2 Metal-Organic Frameworks4.2.1 Description; 4.2.2 Synthesis, Formulation, and Functionalization/Shaping; 4.2.2.1 Synthesis and Formulation/Shaping; 4.2.2.2 Functionalization; 4.2.3 Stability and Toxicity; 4.3 MOFs for Therapeutics; 4.3.1 BioMOFs; 4.3.2 Active Ingredient Adsorption and Release from MOFs; 4.3.2.1 Drugs; 4.3.2.2 Cosmetics; 4.3.3 Understanding; 4.3.3.1 Encapsulation; 4.3.3.2 Release; 4.3.4 Theranostics; 4.3.5 Efficacy; 4.4 Conclusions; List of Abbreviations; References; 5 Amorphous Coordination Polymer Particles for Biomedicine; 5.1 Introduction 5.2 Interaction of Nanoplatforms with the Biological Environment5.3 CPPs as Realistic Alternative to Classical Nanosystems; 5.3.1 Encapsulation Systems Based on CPPs; 5.3.2 Active Metal-Organic Units; 5.3.2.1 Active Metal Ions; 5.3.2.2 Drugs as Bridging Ligands; 5.3.2.3 Active Complexes; 5.3.3 Smart Delivery Systems; 5.3.4 Bioimaging; 5.3.5 Biocompatibility of CPPs; 5.4 Conclusion and Future Challenges; References; 6 Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery; 6.1 Introduction; 6.2 Principles of Magnetically Induced Heat Generation 6.3 Synthesis of MNPs and their Heat Performance |
| Record Nr. | UNINA-9910816401303321 |
| Weinheim, Germany : , : Wiley-VCH, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioinspired Catechol-Based Systems : Chemistry and Applications / / Marco d'Ischia, Daniel Ruiz-Molina
| Bioinspired Catechol-Based Systems : Chemistry and Applications / / Marco d'Ischia, Daniel Ruiz-Molina |
| Autore | d'Ischia Marco |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018 |
| Descrizione fisica | 1 online resource (v, 196 pages) |
| Disciplina | 570.15195 |
| Soggetto topico | Biomimetics |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editors . v Preface to "Bioinspired Catechol-Based Systems: Chemistry and Applications" . vii Chapter 1: Chemistry of Catechol-Based Systems Vincenzo Barone, Ivo Cacelli, Alessandro Ferretti and Giacomo Prampolini Noncovalent Interactions in the Catechol Dimer Reprinted from: Biomimetics 2017, 2(3), 18; doi: 10.3390/biomimetics2030018 . 1 Orlando Crescenzi, Marco d'Ischia and Alessandra Napolitano Kaxiras's Porphyrin: DFT Modeling of Redox-Tuned Optical and Electronic Properties in a Theoretically Designed Catechol-Based Bioinspired Platform Reprinted from: Biomimetics 2017, 2(4), 21; doi: 10.3390/biomimetics2040021 . 14 Riccardo Amorati, Andrea Baschieri, Adam Cowden and Luca Valgimigli The Antioxidant Activity of Quercetin in Water Solution Reprinted from: Biomimetics 2017, 2(3), 9; doi: 10.3390/biomimetics2030009 . 42 Chapter 2: Catechol-Based Biomechanisms and Bioactivity Natalie A. Hamada, Victor A. Roman, Steven M. Howell and Jonathan J. Wilker Examining Potential Active Tempering of Adhesive Curing by Marine Mussels Reprinted from: Biomimetics 2017, 2(3), 16; doi: 10.3390/biomimetics2030016 . 57 Raffaella Micillo, Valeria Pistorio, Elio Pizzo, Lucia Panzella, Alessandra Napolitano and Marco d'Ischia 2-S-Lipoylcaffeic Acid, a Natural Product-Based Entry to Tyrosinase Inhibition via Catechol Manipulation Reprinted from: Biomimetics 2017, 2(3), 15; doi: 10.3390/biomimetics2030015 . 68 Matteo Ramazzotti, Paolo Paoli, Bruno Tiribilli, Caterina Viglianisi, Stefano Menichetti and Donatella Degl'Innocenti Catechol-Containing Hydroxylated Biomimetic 4-Thiaflavanes as Inhibitors of Amyloid Aggregation Reprinted from: Biomimetics 2017, 2(2), 6; doi: 10.3390/biomimetics2020006 . 79 Chapter 3: Catechol Applications in Materials Science Vincent Ball Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials Reprinted from: Biomimetics 2017, 2(3), 12; doi: 10.3390/biomimetics2030012 . 93 Salvio Suárez-García, Josep Sedó, Javier Saiz-Poseu and Daniel Ruiz-Molina Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating Reprinted from: Biomimetics 2017, 2(4), 22; doi: 10.3390/biomimetics2040022 . 109 Jun Feng, Xuan-Anh Ton, Shifang Zhao, Julieta I. Paez and Aránzazu del Campo Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance Reprinted from: Biomimetics 2017, 2(4), 23; doi: 10.3390/biomimetics2040023 . 126 Maria P. Sousa and João F. Mano Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering Reprinted from: Biomimetics 2017, 2(4), 19; doi: 10.3390/biomimetics2040019 . 142 Devang R. Amin, Caroline Sugnaux, King Hang Aaron Lau and Phillip B. Messersmith Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging Reprinted from: Biomimetics 2017, 2(3), 17; doi: 10.3390/biomimetics2030017 . 162 Eunkyoung Kim, Zhengchun Liu, Yi Liu, William E. Bentley and Gregory F. Payne Catechol-Based Hydrogel for Chemical Information Processing Reprinted from: Biomimetics 2017, 2(3), 11; doi: 10.3390/biomimetics2030011 . 181. |
| Altri titoli varianti |
Bioinspired Catechol-Based Systems
Bioinspired Catechol- Based Systems |
| Record Nr. | UNINA-9910674373703321 |
d'Ischia Marco
|
||
| Basel, Switzerland : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioinspired catechol-based systems : chemistry and applications / / edited by Marco D'Ischia, Daniel Ruiz-Molina
| Bioinspired catechol-based systems : chemistry and applications / / edited by Marco D'Ischia, Daniel Ruiz-Molina |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , [2018] |
| Descrizione fisica | 1 online resource (212 pages) : illustrations |
| Disciplina | 547.632 |
| Soggetto topico | Catechol |
| ISBN | 3-03842-814-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editors . v -- Preface to "Bioinspired Catechol-Based Systems: Chemistry and Applications" . vii -- Chapter 1: Chemistry of Catechol-Based Systems Vincenzo Barone, Ivo Cacelli, Alessandro Ferretti and Giacomo Prampolini Noncovalent Interactions in the Catechol Dimer Reprinted from: Biomimetics 2017, 2(3), 18; doi: 10.3390/biomimetics2030018 . 1 -- Orlando Crescenzi, Marco d'Ischia and Alessandra Napolitano Kaxiras's Porphyrin: DFT Modeling of Redox-Tuned Optical and Electronic Properties in a Theoretically Designed Catechol-Based Bioinspired Platform Reprinted from: Biomimetics 2017, 2(4), 21; doi: 10.3390/biomimetics2040021 . 14 -- Riccardo Amorati, Andrea Baschieri, Adam Cowden and Luca Valgimigli The Antioxidant Activity of Quercetin in Water Solution Reprinted from: Biomimetics 2017, 2(3), 9; doi: 10.3390/biomimetics2030009 . 42 -- Chapter 2: Catechol-Based Biomechanisms and Bioactivity Natalie A. Hamada, Victor A. Roman, Steven M. Howell and Jonathan J. Wilker Examining Potential Active Tempering of Adhesive Curing by Marine Mussels Reprinted from: Biomimetics 2017, 2(3), 16; doi: 10.3390/biomimetics2030016 . 57 -- Raffaella Micillo, Valeria Pistorio, Elio Pizzo, Lucia Panzella, Alessandra Napolitano and Marco d'Ischia 2-S-Lipoylcaffeic Acid, a Natural Product-Based Entry to Tyrosinase Inhibition via Catechol Manipulation Reprinted from: Biomimetics 2017, 2(3), 15; doi: 10.3390/biomimetics2030015 . 68 -- Matteo Ramazzotti, Paolo Paoli, Bruno Tiribilli, Caterina Viglianisi, Stefano Menichetti and Donatella Degl'Innocenti Catechol-Containing Hydroxylated Biomimetic 4-Thiaflavanes as Inhibitors of Amyloid Aggregation Reprinted from: Biomimetics 2017, 2(2), 6; doi: 10.3390/biomimetics2020006 . 79 -- Chapter 3: Catechol Applications in Materials Science Vincent Ball Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials Reprinted from: Biomimetics 2017, 2(3), 12; doi: 10.3390/biomimetics2030012 . 93 -- Salvio Suárez-García, Josep Sedó, Javier Saiz-Poseu and Daniel Ruiz-Molina Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating Reprinted from: Biomimetics 2017, 2(4), 22; doi: 10.3390/biomimetics2040022 . 109 -- Jun Feng, Xuan-Anh Ton, Shifang Zhao, Julieta I. Paez and Aránzazu del Campo Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance Reprinted from: Biomimetics 2017, 2(4), 23; doi: 10.3390/biomimetics2040023 . 126 -- Maria P. Sousa and João F. Mano Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering Reprinted from: Biomimetics 2017, 2(4), 19; doi: 10.3390/biomimetics2040019 . 142 -- Devang R. Amin, Caroline Sugnaux, King Hang Aaron Lau and Phillip B. Messersmith Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging Reprinted from: Biomimetics 2017, 2(3), 17; doi: 10.3390/biomimetics2030017 . 162 -- Eunkyoung Kim, Zhengchun Liu, Yi Liu, William E. Bentley and Gregory F. Payne Catechol-Based Hydrogel for Chemical Information Processing Reprinted from: Biomimetics 2017, 2(3), 11; doi: 10.3390/biomimetics2030011 . 181. |
| Altri titoli varianti |
Bioinspired Catechol- Based Systems
Bioinspired Catechol-Based Systems |
| Record Nr. | UNINA-9910765874403321 |
| Basel, Switzerland : , : MDPI, , [2018] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||