top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A guide to noise in microwave circuits : devices, circuits and measurement / / Peter Heymann and Matthias Rudolph
A guide to noise in microwave circuits : devices, circuits and measurement / / Peter Heymann and Matthias Rudolph
Autore Heymann Peter
Pubbl/distr/stampa Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Descrizione fisica 1 online resource (515 pages)
Disciplina 621.38132
Soggetto topico Microwave circuits
Electric noise
Linear integrated circuits
ISBN 1-119-85938-7
1-119-85939-5
1-119-85937-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555156603321
Heymann Peter  
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A guide to noise in microwave circuits : devices, circuits and measurement / / Peter Heymann and Matthias Rudolph
A guide to noise in microwave circuits : devices, circuits and measurement / / Peter Heymann and Matthias Rudolph
Autore Heymann Peter
Pubbl/distr/stampa Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Descrizione fisica 1 online resource (515 pages)
Disciplina 621.38132
Soggetto topico Microwave circuits
Electric noise
Linear integrated circuits
ISBN 1-119-85938-7
1-119-85939-5
1-119-85937-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829926203321
Heymann Peter  
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiv, 352 pages) : digital, PDF file(s)
Disciplina 621.3815/28
Collana The Cambridge RF and microwave engineering series
Soggetto topico Transistors - Mathematical models
Electronic circuit design
ISBN 1-107-22467-5
1-283-34235-9
1-139-16026-5
9786613342355
1-139-15465-6
1-139-16126-1
1-139-15569-5
1-139-15744-2
1-139-15921-6
1-139-01496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics
2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology
3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements
4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction
4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References
5 The large-signal model: theoretical foundations, practical considerations, and recent trends
Record Nr. UNINA-9910457508703321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiv, 352 pages) : digital, PDF file(s)
Disciplina 621.3815/28
Collana The Cambridge RF and microwave engineering series
Soggetto topico Transistors - Mathematical models
Electronic circuit design
ISBN 1-107-22467-5
1-283-34235-9
1-139-16026-5
9786613342355
1-139-15465-6
1-139-16126-1
1-139-15569-5
1-139-15744-2
1-139-15921-6
1-139-01496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics
2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology
3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements
4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction
4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References
5 The large-signal model: theoretical foundations, practical considerations, and recent trends
Record Nr. UNINA-9910781864603321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Nonlinear transistor model parameter extraction techniques / / edited by Matthias Rudolph, Christian Fager, David E. Root [[electronic resource]]
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (xiv, 352 pages) : digital, PDF file(s)
Disciplina 621.3815/28
Collana The Cambridge RF and microwave engineering series
Soggetto topico Transistors - Mathematical models
Electronic circuit design
ISBN 1-107-22467-5
1-283-34235-9
1-139-16026-5
9786613342355
1-139-15465-6
1-139-16126-1
1-139-15569-5
1-139-15744-2
1-139-15921-6
1-139-01496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Nonlinear Transistor Model Parameter Extraction Techniques; The Cambridge RF and Microwave Engineering Series; Title; Copyright; Contents; List of contributors; Preface; 1 Introduction; 1.1 Model extraction challenges; 1.1.1 Accuracy; 1.1.1.1 Circuit application; 1.1.1.2 Measurement uncertainty; 1.1.1.3 Process variations; 1.1.2 Numerical convergence; 1.1.2.1 Breakdown; 1.1.2.2 Self-heating; 1.1.3 Choice of the modeling transistor; 1.2 Model extraction workflow; References; 2 DC and thermal modeling: III--V FETs and HBTs; 2.1 Introduction; 2.2 Basic DC characteristics
2.3 FET DC parameters and modeling2.4 HBT DC parameters and modeling; 2.5 Process control monitoring; 2.6 Thermal modeling overview; 2.7 Physics-based thermal scaling model for HBTs; 2.8 Measurement-based thermal model for FETs; 2.9 Transistor reliability evaluation; Acknowledgments; References; 3 Extrinsic parameter and parasitic elements in III--V HBT and HEMT modeling; 3.1 Introduction; 3.2 Test structures with calibration and de-embedding; 3.3 Methods for extrinsic parameter extraction used in HBTs; 3.3.1 Equivalent circuit topology
3.3.2 Physical description of contact resistances and overlap capacitances3.3.3 Extrinsic resistance and inductance extraction; 3.4 Methods for extrinsic parameter extraction used in HEMTs; 3.4.1 Cold FET technique; 3.4.2 Unbiased technique; 3.4.3 GaN HEMTs exceptions; 3.5 Scaling for multicell arrays; References; 4 Uncertainties in small-signal equivalent circuit modeling; 4.1 Introduction; 4.1.1 Sources of uncertainty in modeling; 4.1.2 Measurement uncertainty; 4.2 Uncertainties in direct extraction methods; 4.2.1 Simple direct extraction example; 4.2.1.1 Example circuit and measurements
4.2.1.2 Uncertainty analysis4.2.1.3 Parameter estimation; 4.2.1.4 Parameter correlations; 4.2.2 Results using transistor measurements; 4.2.2.1 Uncertainty contributions; 4.2.2.2 Intrinsic model parameter sensitivities; 4.2.2.3 Intrinsic model parameter uncertainties; 4.2.2.4 Multibias extraction results; 4.3 Optimizer-based estimation techniques; 4.3.1 Maximum likelihood estimation; 4.3.1.1 Simple example; 4.3.1.2 MLE uncertainty; 4.3.2 MLE of small-signal transistor model parameters; 4.3.2.1 Parasitic parameter estimation; 4.3.2.2 Application to parasitic FET model extraction
4.3.2.3 MLE of intrinsic model parameters4.3.2.4 Application to intrinsic FET model extraction; 4.3.3 Comparison between MLE and the direct extraction method; 4.3.4 Application of MLE in RF-CMOS de-embedding; 4.3.4.1 Method description; 4.3.4.2 Example using 130 nm RF-CMOS measurements; 4.3.4.3 Comparison between different de-embedding methods; 4.3.5 Discussion; 4.4 Complexity versus uncertainty in equivalent circuit modeling; 4.4.1 Finding an optimum model topology; 4.4.2 An illustrative example; 4.4.2.1 MSE estimation procedure; 4.4.2.2 Results; 4.5 Summary and discussion; References
5 The large-signal model: theoretical foundations, practical considerations, and recent trends
Record Nr. UNINA-9910827953503321
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
Autore Rohde Ulrich L
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (915 p.)
Disciplina 621.381/32
621.38132
Altri autori (Persone) RudolphMatthias <1969->
Soggetto topico Microwave circuits - Design and construction
Microwave integrated circuits - Computer-aided design
Radio frequency integrated circuits - Design and construction
Semiconductors - Computer-aided design
Wireless communication systems - Equipment and supplies - Design and construction
Soggetto genere / forma Electronic books.
ISBN 1-118-43148-0
1-283-85885-1
1-118-43140-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF/Microwave Circuit Design for WirelessI Applications; Contents; Foreword; Preface; 1 Introduction to Wireless Circuit Design; 1.1 Introduction; 1.2 System Functions; 1.3 The Radio Channel and Modulation Requirements; 1.3.1 Introduction; 1.3.2 Channel Impulse Response; 1.3.3 Doppler Effect; 1.3.4 Transfer Function; 1.3.5 Time Response of Channel Impulse Response and Transfer Function; 1.3.6 Lessons Learned; 1.3.7 Wireless Signal Example: The TDMA System in GSM; 1.3.7.1 Frequency Division Multiple Access (FDMA); 1.3.7.2 Time-Division Multiple Access (TDMA)
1.3.7.3 Code-Division Multiple Access (CDMA)1.3.7.4 TDMA in GSM; 1.3.7.5 TDMA Structure; 1.3.7.6 Bit Synchronization; 1.3.7.7 Compensation of Multipath Reception; 1.3.8 From GSM to UMTS to LTE; 1.4 About Bits, Symbols, and Waveforms; 1.4.1 Introduction; 1.4.1.1 Representation of a Modulated RF Carrier; 1.4.1.2 The Spectrum of a Digitally Modulated Carrier; 1.4.2 Some Fundamentals of Digital Modulation Techniques; 1.4.2.1 Spread-Spectrum and CDMA Modulation Techniques; 1.4.2.2 Orthogonal Frequency Division Modulation (OFDM) and Single- Carrier Frequency-Division Multiple Access (SC-FDMA)
1.5 Analysis of Wireless Systems1.5.1 Analog and Digital Receiver Designs; 1.5.1.1 Receiver Design Examples; 1.5.1.2 PLL CAD Simulation; 1.5.2 Transmitters; 1.5.2.1 Linear Digital Modulation; 1.5.2.2 Digital and Analog FM; 1.5.2.3 Single Sideband AM (SSB-AM); 1.5.2.4 Designing with the SA900; 1.5.2.5 ISM Band Application; 1.6 Building Blocks; 1.7 System Specifications and Their Relationship to Circuit Design; 1.7.1 System Noise and Noise Floor; 1.7.2 System Amplitude and Phase Behavior; 1.8 Testing; 1.8.1 Introduction; 1.8.2 Transmission and Reception Quality; 1.8.3 Base Station Simulation
1.8.4 GSM1.8.5 DECT; 1.9 Converting C/N or SNR to EB/N0; References; Further Reading; 2 Models for Active Devices; 2.1 Diodes; 2.1.1 Large-Signal Diode Model; 2.1.2 Mixer and Detector Diodes; 2.1.2.1 Junction Capacitance; 2.1.2.2 Parameter Trade-Offs; 2.1.2.3 Mixer Diodes; 2.1.2.4 Linear Diode Model; 2.1.3 PIN Diodes; 2.1.3.1 Introduction; 2.1.3.2 Large-Signal PIN Diode Model; 2.1.3.3 Basic Theory: Variable Resistance; 2.1.3.4 Breakdown Voltage, Capacitance, Q Factor; 2.1.3.5 PIN Diode Applications; 2.1.3.6 Example: A PIN Diode π Network for TV Tuners; 2.1.4 Tuning Diodes
2.1.4.1 Introduction2.1.4.2 Tuning Diode Physics; 2.1.4.3 Capacitance; 2.1.4.4 Q Factor or Diode Loss; 2.1.4.5 Distortion Products; 2.1.4.6 Electrical Properties of Tuning Diodes; 2.1.4.7 Diode-Tuned Resonant Circuits; 2.2 Bipolar Transistors; 2.2.1 Transistor Structure Types; 2.2.2 Large-Signal Behavior of Bipolar Transistors; 2.2.2.1 Electrical Characteristics and Specifications; 2.2.3 Large-Signal Transistors in the Forward-Active Region; 2.2.4 Improving RF Performance by Means of Heterostructures
2.2.5 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region of BJTs
Record Nr. UNINA-9910462946803321
Rohde Ulrich L  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
Autore Rohde Ulrich L
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica xix, 893 p. : ill
Altri autori (Persone) RudolphMatthias <1969->
Soggetto topico Microwave circuits - Design and construction
Microwave integrated circuits - Computer-aided design
Radio frequency integrated circuits - Design and construction
Semiconductors - Computer-aided design
Wireless communication systems - Equipment and supplies - Design and construction
ISBN 1-118-43140-5
1-283-85885-1
1-118-43148-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795967903321
Rohde Ulrich L  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications / / Ulrich L. Rohde, Matthias Rudolph
RF/microwave circuit design for wireless applications / / Ulrich L. Rohde, Matthias Rudolph
Autore Rohde Ulrich L
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica xix, 893 p. : ill
Disciplina 621.381/32
Altri autori (Persone) RudolphMatthias <1969->
Soggetto topico Microwave circuits - Design and construction
Microwave integrated circuits - Computer-aided design
Radio frequency integrated circuits - Design and construction
Semiconductors - Computer-aided design
Wireless communication systems - Equipment and supplies - Design and construction
ISBN 1-118-43140-5
1-283-85885-1
1-118-43148-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF/Microwave Circuit Design for WirelessI Applications -- Contents -- Foreword -- Preface -- 1 Introduction to Wireless Circuit Design -- 1.1 Introduction -- 1.2 System Functions -- 1.3 The Radio Channel and Modulation Requirements -- 1.3.1 Introduction -- 1.3.2 Channel Impulse Response -- 1.3.3 Doppler Effect -- 1.3.4 Transfer Function -- 1.3.5 Time Response of Channel Impulse Response and Transfer Function -- 1.3.6 Lessons Learned -- 1.3.7 Wireless Signal Example: The TDMA System in GSM -- 1.3.7.1 Frequency Division Multiple Access (FDMA) -- 1.3.7.2 Time-Division Multiple Access (TDMA) -- 1.3.7.3 Code-Division Multiple Access (CDMA) -- 1.3.7.4 TDMA in GSM -- 1.3.7.5 TDMA Structure -- 1.3.7.6 Bit Synchronization -- 1.3.7.7 Compensation of Multipath Reception -- 1.3.8 From GSM to UMTS to LTE -- 1.4 About Bits, Symbols, and Waveforms -- 1.4.1 Introduction -- 1.4.1.1 Representation of a Modulated RF Carrier -- 1.4.1.2 The Spectrum of a Digitally Modulated Carrier -- 1.4.2 Some Fundamentals of Digital Modulation Techniques -- 1.4.2.1 Spread-Spectrum and CDMA Modulation Techniques -- 1.4.2.2 Orthogonal Frequency Division Modulation (OFDM) and Single- Carrier Frequency-Division Multiple Access (SC-FDMA) -- 1.5 Analysis of Wireless Systems -- 1.5.1 Analog and Digital Receiver Designs -- 1.5.1.1 Receiver Design Examples -- 1.5.1.2 PLL CAD Simulation -- 1.5.2 Transmitters -- 1.5.2.1 Linear Digital Modulation -- 1.5.2.2 Digital and Analog FM -- 1.5.2.3 Single Sideband AM (SSB-AM) -- 1.5.2.4 Designing with the SA900 -- 1.5.2.5 ISM Band Application -- 1.6 Building Blocks -- 1.7 System Specifications and Their Relationship to Circuit Design -- 1.7.1 System Noise and Noise Floor -- 1.7.2 System Amplitude and Phase Behavior -- 1.8 Testing -- 1.8.1 Introduction -- 1.8.2 Transmission and Reception Quality -- 1.8.3 Base Station Simulation -- 1.8.4 GSM.
1.8.5 DECT -- 1.9 Converting C/N or SNR to EB/N0 -- References -- Further Reading -- 2 Models for Active Devices -- 2.1 Diodes -- 2.1.1 Large-Signal Diode Model -- 2.1.2 Mixer and Detector Diodes -- 2.1.2.1 Junction Capacitance -- 2.1.2.2 Parameter Trade-Offs -- 2.1.2.3 Mixer Diodes -- 2.1.2.4 Linear Diode Model -- 2.1.3 PIN Diodes -- 2.1.3.1 Introduction -- 2.1.3.2 Large-Signal PIN Diode Model -- 2.1.3.3 Basic Theory: Variable Resistance -- 2.1.3.4 Breakdown Voltage, Capacitance, Q Factor -- 2.1.3.5 PIN Diode Applications -- 2.1.3.6 Example: A PIN Diode π Network for TV Tuners -- 2.1.4 Tuning Diodes -- 2.1.4.1 Introduction -- 2.1.4.2 Tuning Diode Physics -- 2.1.4.3 Capacitance -- 2.1.4.4 Q Factor or Diode Loss -- 2.1.4.5 Distortion Products -- 2.1.4.6 Electrical Properties of Tuning Diodes -- 2.1.4.7 Diode-Tuned Resonant Circuits -- 2.2 Bipolar Transistors -- 2.2.1 Transistor Structure Types -- 2.2.2 Large-Signal Behavior of Bipolar Transistors -- 2.2.2.1 Electrical Characteristics and Specifications -- 2.2.3 Large-Signal Transistors in the Forward-Active Region -- 2.2.4 Improving RF Performance by Means of Heterostructures -- 2.2.5 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region of BJTs -- 2.2.6 Effects of Collector Current and Voltage on Large-Signal Characteristics in the Forward-Active Region of HBTs -- 2.2.7 Saturation and Inverse Active Regions -- 2.2.8 Self-Heating -- 2.2.9 Small-Signal Models of Bipolar Transistors -- 2.3 Field-Effect Transistors -- 2.4 Large-Signal Behavior of JFETs -- 2.4.1 Small-Signal Behavior of JFETs -- 2.4.2 Large-Signal Behavior of MOSFETs -- 2.4.2.1 Transfer Characteristics of MOS Devices -- 2.4.2.2 MOS Device Voltage Limitations -- 2.4.3 Small-Signal Model of the MOS Transistor in Saturation -- 2.4.4 Short-Channel Effects in FETs -- 2.4.5 Small-Signal Models of MOSFETs.
2.4.5.1 Subthreshold Conduction in MOSFETs -- 2.4.5.2 Substrate Flow in MOSFETs -- 2.4.6 III-V MESFETs and HEMTs -- 2.4.6.1 Introduction -- 2.4.6.2 HEMTs -- 2.4.6.3 Large-Signal Behavior of MESFETs and HEMTs -- 2.4.6.4 The Modified Materka-Kacprzak Model -- 2.4.6.5 Enhancement/Depletion FETs -- 2.4.7 Small-Signal GaAs MESFET and HEMT Model -- 2.5 Parameter Extraction of Active Devices -- 2.5.1 Introduction -- 2.5.2 Typical SPICE Parameters -- 2.5.3 Noise Modeling -- 2.5.3.1 Diode Noise Model -- 2.5.3.2 BJT Noise Model -- 2.5.3.3 JFET and MESFET Noise Model -- 2.5.3.4 MOSFET Noise Model -- 2.5.4 Scalable Device Models -- 2.5.5 Generating a Databank for Parameter Extraction -- 2.5.5.1 MESFETs -- 2.5.5.2 A Case Study -- 2.5.6 Conclusions -- 2.5.7 Device Libraries -- 2.5.8 Physics-Based MESFET Modeling -- 2.5.9 Example: Improving the BFR193W Model -- References -- Further Reading -- 3 Amplifier Design with BJTs and FETs -- 3.1 Properties of Amplifiers -- 3.1.1 Introduction -- 3.1.2 Gain -- 3.1.3 Noise Figure (NF) -- 3.1.4 Linearity -- 3.1.5 AGC -- 3.1.6 Bias and Power Voltage and Current (Power Consumption) -- 3.2 Amplifier Gain, Stability, and Matching -- 3.2.1 Scattering Parameter Relationships -- 3.2.2 Low-Noise Amplifiers -- 3.2.3 High-Gain Amplifiers -- 3.2.4 Low-Voltage Open-Collector Design -- 3.3 Single-Stage Feedback Amplifiers -- 3.3.1 Lossless or Noiseless Feedback -- 3.3.2 Broadband Matching -- 3.4 Two-Stage Amplifiers -- 3.5 Amplifiers with Three or More Stages -- 3.5.1 Stability of Multistage Amplifiers -- 3.6 A Novel Approach to Voltage-Controlled Tuned Filters Including CAD Validation -- 3.6.1 Diode Performance -- 3.6.2 A VHF Example -- 3.6.3 An HF/VHF Voltage-Controlled Filter -- 3.6.4 Improving the VHF Filter -- 3.6.5 Conclusion -- 3.7 Differential Amplifiers -- 3.8 Frequency Doublers.
3.9 Multistage Amplifiers with Automatic Gain Control (AGC) -- 3.10 Biasing -- 3.10.1 RF Biasing -- 3.10.2 dc Biasing -- 3.10.3 dc Biasing of IC-Type Amplifiers -- 3.11 Push-Pull/Parallel Amplifiers -- 3.12 Power Amplifiers -- 3.12.1 Example 1: 7-W Class C BJT Amplifier for 1.6 GHz -- 3.12.2 Example: A Highly Efficient 3.5 GHz Inverse Class-F GaN HEMT Power Amplifier -- 3.12.2.1 Inverse Class-F PAs -- 3.12.2.2 Design Methodology -- 3.12.2.3 Implementation and Measurement Results -- 3.12.2.4 Conclusions -- 3.12.3 Linear Amplifier Systems -- 3.12.3.1 Class A/AB Operation and Power Back-Off -- 3.12.3.2 RF Feedback -- 3.12.3.3 Modulation Feedback -- 3.12.3.4 Feedforward -- 3.12.3.5 Predistortion -- 3.12.3.6 Baseband Predistortion -- 3.12.4 Impedance Matching Networks Applied to RF Power Transistors -- 3.12.5 Example 2: Low-Noise Amplifier Using Distributed Elements -- 3.12.6 Example 3: 1-W Amplifier Using the CLY15 -- 3.12.7 Example 4: 90-W Push-Pull BJT Amplifier at 430 MHz -- 3.12.8 Quasiparallel Transistors for Improved Linearity -- 3.12.9 Distribution Amplifiers -- 3.12.10 Stability Analysis of a Power Amplifier -- References -- Further Reading -- 4 Mixer Design -- 4.1 Introduction -- 4.2 Properties of Mixers -- 4.2.1 Conversion Gain/Loss -- 4.2.2 Noise Figure -- 4.2.2.1 Passive Mixer -- 4.2.2.2 Example -- 4.2.2.3 Exact Mathematical Nonlinear Approach -- 4.2.2.4 Differential CMOS Mixer -- 4.2.2.5 SSB Versus DSB Noise Figure -- 4.2.3 Linearity -- 4.2.3.1 1 dB Compression Point -- 4.2.3.2 1 dB Desensitization Point -- 4.2.3.3 Dynamic Range -- 4.2.3.4 Harmonic Intermodulation Products (HIP) -- 4.2.3.5 Intermodulation Distortion (IMD) -- 4.2.4 LO Drive Level -- 4.2.5 Interport Isolation -- 4.2.6 Port VSWR -- 4.2.7 dc Offset -- 4.2.8 dc Polarity -- 4.2.9 Power Consumption -- 4.3 Diode Mixers -- 4.3.1 Single-Diode Mixer -- 4.3.2 Single-Balanced Mixer.
4.3.2.1 Subharmonically Pumped Single-Balanced Mixer -- 4.3.3 Diode-Ring Mixer -- 4.3.3.1 Termination-Insensitive Mixer -- 4.3.3.2 Phase Detector -- 4.3.3.3 Binary Phase-Shift Keying (BPSK) Modulator -- 4.3.3.4 Quadrature Phase-Shift Keying (QPSK) Modulator -- 4.3.3.5 Quadrature IF Mixer -- 4.3.3.6 Image-Reject Mixer -- 4.3.3.7 Diode Attenuator/Switch -- 4.3.3.8 Single-Sideband (SSB) or In-Phase/Quadrature (I/Q) Modulator -- 4.3.3.9 Triple-Balanced Mixer -- 4.3.3.10 Rohde and Schwarz Subharmonically Pumped DBM -- 4.4 Transistor Mixers -- 4.4.1 BJT Gilbert Cell -- 4.4.2 BJT Gilbert Cell with Feedback -- 4.4.3 FET Mixers -- 4.4.4 MOSFET Gilbert Cell -- 4.4.5 GaAsFET Single-Gate Switch-Resistive Mixer -- 4.4.5.1 Noise in Resistive Mixers -- References -- Further Reading -- 5 RF/Wireless Oscillators -- 5.1 Introduction of Frequency Control -- 5.2 Background -- 5.3 Oscillator Design -- 5.3.1 Basics of Oscillators -- 5.3.1.1 Example 1 -- 5.3.1.2 Example 2 -- 5.3.1.3 Two-Port Oscillator -- 5.3.1.4 Amplitude Stability -- 5.3.1.5 Phase Stability -- 5.4 Oscillator Circuits -- 5.4.1 Hartley -- 5.4.2 Colpitts -- 5.4.3 Clapp-Gouriet -- 5.5 Design of RF Oscillators -- 5.5.1 General Thoughts on Transistor Oscillators -- 5.5.2 Two-Port Microwave/RF Oscillator Design -- 5.5.3 Ceramic-Resonator Oscillators -- 5.5.3.1 Calculation of Equivalent Circuit -- 5.5.4 Using a Microstrip Inductor as the Oscillator Resonator -- 5.5.4.1 Increasing Loaded Q -- 5.5.4.2 High-Q Microstrip Inductor -- 5.5.4.3 UHF VCO Using the Tapped-Inductor Differential Oscillator at 900 MHz -- 5.5.5 Hartley Microstrip Resonator Oscillator -- 5.5.6 Crystal Oscillators -- 5.5.7 Voltage-Controlled Oscillators -- 5.5.8 Diode-Tuned Resonant Circuits -- 5.5.8.1 Tuner Diode in Parallel-Resonant Circuit -- 5.5.8.2 Capacitances Connected in Parallel or in Series with the Tuning Diode -- 5.5.8.3 Tuning Range.
5.5.8.4 Tracking.
Record Nr. UNINA-9910958624203321
Rohde Ulrich L  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui