Random graphs / / Svante Janson, Tomasz Luczak, Andrzej Rucinski |
Autore | Janson Svante |
Pubbl/distr/stampa | New York, New York : , : John Wiley & Sons, Inc., , 2000 |
Descrizione fisica | 1 online resource (350 p.) |
Disciplina |
511.5
511/.5 |
Collana | Wiley-Interscience Series in Discrete Mathematics and Optimization |
Soggetto topico | Random graphs |
ISBN |
1-118-03271-3
1-118-03096-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Random Graphs; Preface; Contents; 1 Preliminaries; 1.1 Models of random graphs; 1.2 Notes on notation and more; 1.3 Monotonicity; 1.4 Asymptotic equivalence; 1.5 Thresholds; 1.6 Sharp thresholds; 2 Exponentially Small Probabilities; 2.1 Independent summands; 2.2 Binomial random subsets; 2.3 Suen's inequality; 2.4 Martingales; 2.5 Talagrand's inequality; 2.6 The upper tail; 3 Small Subgraphs; 3.1 The containment problem; 3.2 Leading overlaps and the subgraph plot; 3.3 Subgraph count at the threshold; 3.4 The covering problem; 3.5 Disjoint copies; 3.6 Variations on the theme; 4 Matchings
4.1 Perfect matchings4.2 G-factors; 4.3 Two open problems; 5 The Phase Transition; 5.1 The evolution of the random graph; 5.2 The emergence of the giant component; 5.3 The emergence of the giant: A closer look; 5.4 The structure of the giant component; 5.5 Near the critical period; 5.6 Global properties and the symmetry rule; 5.7 Dynamic properties; 6 Asymptotic Distributions; 6.1 The method of moments; 6.2 Stein's method: The Poisson case; 6.3 Stein's method: The normal case; 6.4 Projections and decompositions; 6.5 Further methods; 7 The Chromatic Number; 7.1 The stability number 7.2 The chromatic number: A greedy approach7.3 The concentration of the chromatic number; 7.4 The chromatic number of dense random graphs; 7.5 The chromatic number of sparse random graphs; 7.6 Vertex partition properties; 8 Extremal and Ramsey Properties; 8.1 Heuristics and results; 8.2 Triangles: The first approach; 8.3 The Szemerédi Regularity Lemma; 8.4 A partition theorem for random graphs; 8.5 Triangles: An approach with perspective; 9 Random Regular Graphs; 9.1 The configuration model; 9.2 Small cycles; 9.3 Hamilton cycles; 9.4 Proofs; 9.5 Contiguity of random regular graphs 9.6 A brief course in contiguity10 Zero-One Laws; 10.1 Preliminaries; 10.2 Ehrenfeucht games and zero-one laws; 10.3 Filling gaps; 10.4 Sums of models; 10.5 Separability and the speed of convergence; References; Index of Notation; Index |
Record Nr. | UNINA-9910141243703321 |
Janson Svante | ||
New York, New York : , : John Wiley & Sons, Inc., , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Random graphs / / Svante Janson, Tomasz Luczak, Andrzej Rucinski |
Autore | Janson Svante |
Pubbl/distr/stampa | New York, New York : , : John Wiley & Sons, Inc., , 2000 |
Descrizione fisica | 1 online resource (350 p.) |
Disciplina |
511.5
511/.5 |
Collana | Wiley-Interscience Series in Discrete Mathematics and Optimization |
Soggetto topico | Random graphs |
ISBN |
1-118-03271-3
1-118-03096-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Random Graphs; Preface; Contents; 1 Preliminaries; 1.1 Models of random graphs; 1.2 Notes on notation and more; 1.3 Monotonicity; 1.4 Asymptotic equivalence; 1.5 Thresholds; 1.6 Sharp thresholds; 2 Exponentially Small Probabilities; 2.1 Independent summands; 2.2 Binomial random subsets; 2.3 Suen's inequality; 2.4 Martingales; 2.5 Talagrand's inequality; 2.6 The upper tail; 3 Small Subgraphs; 3.1 The containment problem; 3.2 Leading overlaps and the subgraph plot; 3.3 Subgraph count at the threshold; 3.4 The covering problem; 3.5 Disjoint copies; 3.6 Variations on the theme; 4 Matchings
4.1 Perfect matchings4.2 G-factors; 4.3 Two open problems; 5 The Phase Transition; 5.1 The evolution of the random graph; 5.2 The emergence of the giant component; 5.3 The emergence of the giant: A closer look; 5.4 The structure of the giant component; 5.5 Near the critical period; 5.6 Global properties and the symmetry rule; 5.7 Dynamic properties; 6 Asymptotic Distributions; 6.1 The method of moments; 6.2 Stein's method: The Poisson case; 6.3 Stein's method: The normal case; 6.4 Projections and decompositions; 6.5 Further methods; 7 The Chromatic Number; 7.1 The stability number 7.2 The chromatic number: A greedy approach7.3 The concentration of the chromatic number; 7.4 The chromatic number of dense random graphs; 7.5 The chromatic number of sparse random graphs; 7.6 Vertex partition properties; 8 Extremal and Ramsey Properties; 8.1 Heuristics and results; 8.2 Triangles: The first approach; 8.3 The Szemerédi Regularity Lemma; 8.4 A partition theorem for random graphs; 8.5 Triangles: An approach with perspective; 9 Random Regular Graphs; 9.1 The configuration model; 9.2 Small cycles; 9.3 Hamilton cycles; 9.4 Proofs; 9.5 Contiguity of random regular graphs 9.6 A brief course in contiguity10 Zero-One Laws; 10.1 Preliminaries; 10.2 Ehrenfeucht games and zero-one laws; 10.3 Filling gaps; 10.4 Sums of models; 10.5 Separability and the speed of convergence; References; Index of Notation; Index |
Record Nr. | UNINA-9910830265703321 |
Janson Svante | ||
New York, New York : , : John Wiley & Sons, Inc., , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|