top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian statistics and marketing [[electronic resource] /] / Peter E. Rossi, Greg M. Allenby, Robert McCulloch
Bayesian statistics and marketing [[electronic resource] /] / Peter E. Rossi, Greg M. Allenby, Robert McCulloch
Autore Rossi Peter E (Peter Eric), <1955->
Edizione [Reprinted with corrections.]
Pubbl/distr/stampa Chichester, England, : J. Wiley, 2006, c2005
Descrizione fisica 1 online resource (372 p.)
Disciplina 658.8
658.83015118
Altri autori (Persone) AllenbyGreg M <1956-> (Greg Martin)
McCullochRobert E (Robert Edward)
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Marketing research - Mathematical models
Marketing - Mathematical models
ISBN 1-280-59232-X
9786613622150
0-470-86369-2
0-470-86368-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Statistics and Marketing; Contents; 1 Introduction; 1.1 A Basic Paradigm for Marketing Problems; 1.2 A Simple Example; 1.3 Benefits and Costs of the Bayesian Approach; 1.4 An Overview of Methodological Material and Case Studies; 1.5 Computing and This Book; Acknowledgements; 2 Bayesian Essentials; 2.0 Essential Concepts from Distribution Theory; 2.1 The Goal of Inference and Bayes' Theorem; 2.2 Conditioning and the Likelihood Principle; 2.3 Prediction and Bayes; 2.4 Summarizing the Posterior; 2.5 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators
2.6 Identification and Bayesian Inference 2.7 Conjugacy, Sufficiency, and Exponential Families; 2.8 Regression and Multivariate Analysis Examples; 2.9 Integration and Asymptotic Methods; 2.10 Importance Sampling; 2.11 Simulation Primer for Bayesian Problems; 2.12 Simulation from the Posterior of the Multivariate Regression Model; 3 Markov Chain Monte Carlo Methods; 3.1 Markov Chain Monte Carlo Methods; 3.2 A Simple Example: Bivariate Normal Gibbs Sampler; 3.3 Some Markov Chain Theory; 3.4 Gibbs Sampler; 3.5 Gibbs Sampler for the Seemingly Unrelated Regression Model
3.6 Conditional Distributions and Directed Graphs 3.7 Hierarchical Linear Models; 3.8 Data Augmentation and a Probit Example; 3.9 Mixtures of Normals; 3.10 Metropolis Algorithms; 3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model; 3.12 Hybrid Markov Chain Monte Carlo Methods; 3.13 Diagnostics; 4 Unit-Level Models and Discrete Demand; 4.1 Latent Variable Models; 4.2 Multinomial Probit Model; 4.3 Multivariate Probit Model; 4.4 Demand Theory and Models Involving Discrete Choice; 5 Hierarchical Models for Heterogeneous Units; 5.1 Heterogeneity and Priors
5.2 Hierarchical Models 5.3 Inference for Hierarchical Models; 5.4 A Hierarchical Multinomial Logit Example; 5.5 Using Mixtures of Normals; 5.6 Further Elaborations of the Normal Model of Heterogeneity; 5.7 Diagnostic Checks of the First-Stage Prior; 5.8 Findings and Influence on Marketing Practice; 6 Model Choice and Decision Theory; 6.1 Model Selection; 6.2 Bayes Factors in the Conjugate Setting; 6.3 Asymptotic Methods for Computing Bayes Factors; 6.4 Computing Bayes Factors Using Importance Sampling; 6.5 Bayes Factors Using MCMC Draws; 6.6 Bridge Sampling Methods
6.7 Posterior Model Probabilities with Unidentified Parameters 6.8 Chib's Method; 6.9 An Example of Bayes Factor Computation: Diagonal Multinomial Probit Models; 6.10 Marketing Decisions and Bayesian Decision Theory; 6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information; 7 Simultaneity; 7.1 A Bayesian Approach to Instrumental Variables; 7.2 Structural Models and Endogeneity/Simultaneity; 7.3 Nonrandom Marketing Mix Variables; Case Study 1: A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts; Background; Model; Data; Results
Discussion
Record Nr. UNINA-9910142573003321
Rossi Peter E (Peter Eric), <1955->  
Chichester, England, : J. Wiley, 2006, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian statistics and marketing [[electronic resource] /] / Peter E. Rossi, Greg M. Allenby, Robert McCulloch
Bayesian statistics and marketing [[electronic resource] /] / Peter E. Rossi, Greg M. Allenby, Robert McCulloch
Autore Rossi Peter E (Peter Eric), <1955->
Edizione [Reprinted with corrections.]
Pubbl/distr/stampa Chichester, England, : J. Wiley, 2006, c2005
Descrizione fisica 1 online resource (372 p.)
Disciplina 658.8
658.83015118
Altri autori (Persone) AllenbyGreg M <1956-> (Greg Martin)
McCullochRobert E (Robert Edward)
Collana Wiley series in probability and statistics
Soggetto topico Bayesian statistical decision theory
Marketing research - Mathematical models
Marketing - Mathematical models
ISBN 1-280-59232-X
9786613622150
0-470-86369-2
0-470-86368-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bayesian Statistics and Marketing; Contents; 1 Introduction; 1.1 A Basic Paradigm for Marketing Problems; 1.2 A Simple Example; 1.3 Benefits and Costs of the Bayesian Approach; 1.4 An Overview of Methodological Material and Case Studies; 1.5 Computing and This Book; Acknowledgements; 2 Bayesian Essentials; 2.0 Essential Concepts from Distribution Theory; 2.1 The Goal of Inference and Bayes' Theorem; 2.2 Conditioning and the Likelihood Principle; 2.3 Prediction and Bayes; 2.4 Summarizing the Posterior; 2.5 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators
2.6 Identification and Bayesian Inference 2.7 Conjugacy, Sufficiency, and Exponential Families; 2.8 Regression and Multivariate Analysis Examples; 2.9 Integration and Asymptotic Methods; 2.10 Importance Sampling; 2.11 Simulation Primer for Bayesian Problems; 2.12 Simulation from the Posterior of the Multivariate Regression Model; 3 Markov Chain Monte Carlo Methods; 3.1 Markov Chain Monte Carlo Methods; 3.2 A Simple Example: Bivariate Normal Gibbs Sampler; 3.3 Some Markov Chain Theory; 3.4 Gibbs Sampler; 3.5 Gibbs Sampler for the Seemingly Unrelated Regression Model
3.6 Conditional Distributions and Directed Graphs 3.7 Hierarchical Linear Models; 3.8 Data Augmentation and a Probit Example; 3.9 Mixtures of Normals; 3.10 Metropolis Algorithms; 3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model; 3.12 Hybrid Markov Chain Monte Carlo Methods; 3.13 Diagnostics; 4 Unit-Level Models and Discrete Demand; 4.1 Latent Variable Models; 4.2 Multinomial Probit Model; 4.3 Multivariate Probit Model; 4.4 Demand Theory and Models Involving Discrete Choice; 5 Hierarchical Models for Heterogeneous Units; 5.1 Heterogeneity and Priors
5.2 Hierarchical Models 5.3 Inference for Hierarchical Models; 5.4 A Hierarchical Multinomial Logit Example; 5.5 Using Mixtures of Normals; 5.6 Further Elaborations of the Normal Model of Heterogeneity; 5.7 Diagnostic Checks of the First-Stage Prior; 5.8 Findings and Influence on Marketing Practice; 6 Model Choice and Decision Theory; 6.1 Model Selection; 6.2 Bayes Factors in the Conjugate Setting; 6.3 Asymptotic Methods for Computing Bayes Factors; 6.4 Computing Bayes Factors Using Importance Sampling; 6.5 Bayes Factors Using MCMC Draws; 6.6 Bridge Sampling Methods
6.7 Posterior Model Probabilities with Unidentified Parameters 6.8 Chib's Method; 6.9 An Example of Bayes Factor Computation: Diagonal Multinomial Probit Models; 6.10 Marketing Decisions and Bayesian Decision Theory; 6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information; 7 Simultaneity; 7.1 A Bayesian Approach to Instrumental Variables; 7.2 Structural Models and Endogeneity/Simultaneity; 7.3 Nonrandom Marketing Mix Variables; Case Study 1: A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts; Background; Model; Data; Results
Discussion
Record Nr. UNINA-9910825632103321
Rossi Peter E (Peter Eric), <1955->  
Chichester, England, : J. Wiley, 2006, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui