top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Sigma-delta converters : practical design guide / / José M. de la Rosa, University of Seville, Spain
Sigma-delta converters : practical design guide / / José M. de la Rosa, University of Seville, Spain
Autore Rosa José M. de la
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2019
Descrizione fisica 1 online resource (566 pages)
Disciplina 621.3815/9
Soggetto topico Metal oxide semiconductors, Complementary - Design and construction
Analog-to-digital converters - Design and construction
Soggetto genere / forma Electronic books.
ISBN 1-119-27575-X
1-119-27577-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xix -- Acknowledgements xxv -- List of Abbreviations xxvii -- 1 Introduction to 𝚺𝚫 Modulators: Fundamentals, Basic Architecture and Performance Metrics 1 -- 1.1 Basics of Analog-to-Digital Conversion 2 -- 1.1.1 Sampling 3 -- 1.1.2 Quantization 4 -- 1.1.3 Quantization White Noise Model 5 -- 1.1.4 Noise Shaping 8 -- 1.2 Sigma-Delta Modulation 9 -- 1.2.1 From Noise-shaped Systems to ΣΔ Modulators 10 -- 1.2.2 Performance Metrics of ΣΔMs 11 -- 1.3 The First-order ΣΔ Modulator 13 -- 1.4 Performance Enhancement and Taxonomy of ΣΔMs 16 -- 1.4.1 ΣΔM System-level Design Parameters and Strategies 17 -- 1.4.2 Classification of ΣΔMs 18 -- 1.5 Putting All The Pieces Together: From ΣΔMs to ΣΔ ADCs 19 -- 1.5.1 Some Words about ΣΔ Decimators 20 -- 1.6 ΣΔ DACs 22 -- 1.6.1 System Design Trade-offs and Signal Processing in ΣΔ DACs 22 -- 1.6.2 Implementation of Digital ΣΔMs used in DACs 24 -- 1.7 Summary 25 -- References 26 -- 2 Taxonomy of 𝚺𝚫 Architectures 29 -- 2.1 Second-order ΣΔ Modulators 30 -- 2.1.1 Alternative Representations of Second-order ΣΔMs 31 -- 2.1.2 Second-Order ΣΔM with Unity STF 34 -- 2.2 High-order Single-loop ΣΔMs 35 -- 2.3 Cascade ΣΔ Modulators 39 -- 2.3.1 SMASH ΣΔM Architectures 46 -- 2.4 Multi-bit ΣΔ Modulators 49 -- 2.4.1 Influence of Multi-bit DAC Errors 49 -- 2.4.2 Dynamic Element Matching Techniques 50 -- 2.4.3 Dual Quantization 53 -- 2.4.3.1 Dual-quantization Single-loop ΣΔMs 53 -- 2.4.3.2 Dual-quantization Cascade ΣΔMs 54 -- 2.5 Band-pass ΣΔ Modulators 55 -- 2.5.1 Quadrature BP-ΣΔMs 56 -- 2.5.2 The z → −z2 LP-BP Transformation 58 -- 2.5.3 BP-ΣΔMs with Optimized NTF 58 -- 2.5.4 Time-interleaved and Polyphase BP-ΣΔMs 61.
2.6 Continuous-time ΣΔ Modulators: Architecture and Basic Concepts 64 -- 2.6.1 An Intuitive Analysis of CT-ΣΔMs 66 -- 2.6.2 Some Words about Alias Rejection in CT-ΣΔMs 69 -- 2.7 DT-CT Transformation of ΣΔMs 70 -- 2.7.1 The Impulse-invariant Transformation 70 -- 2.7.2 DT-CT Transformation of a Second-order ΣΔM 72 -- 2.8 Direct Synthesis of CT-ΣΔMs 74 -- 2.9 Summary 76 -- References 76 -- 3 Circuit Errors in Switched-capacitor 𝚺𝚫 Modulators 83 -- 3.1 Overview of Nonidealities in Switched-capacitor ΣΔ Modulators 84 -- 3.2 Finite Amplifier Gain in SC-ΣΔMs 86 -- 3.3 Capacitor Mismatch in SC-ΣΔMs 90 -- 3.4 Integrator Settling Error in SC-ΣΔMs 91 -- 3.4.1 Behavioral Model for the Integrator Settling 91 -- 3.4.2 Linear Effect of Finite Amplifier Gain-Bandwidth Product 95 -- 3.4.3 Nonlinear Effect of Finite Amplifier Slew Rate 98 -- 3.4.4 Effect of Finite Switch On-resistance 100 -- 3.5 Circuit Noise in SC-ΣΔMs 101 -- 3.6 Clock Jitter in SC-ΣΔMs 105 -- 3.7 Sources of Distortion in SC-ΣΔMs 107 -- 3.7.1 Nonlinear Amplifier Gain 107 -- 3.7.2 Nonlinear Switch On-Resistance 109 -- 3.8 Case Study: High-level Sizing of a ΣΔM 111 -- 3.8.1 Ideal Modulator Performance 111 -- 3.8.2 Noise Leakages 112 -- 3.8.3 Circuit Noise 115 -- 3.8.4 Settling Error 116 -- 3.8.5 Overall High-Level Sizing and Noise Budget 117 -- 3.9 Summary 119 -- References 119 -- 4 Circuit Errors and Compensation Techniques in Continuous-time 𝚺𝚫 Modulators 123 -- 4.1 Overview of Nonidealities in Continuous-time ΣΔ Modulators 123 -- 4.2 CT Integrators and Resonators 124 -- 4.3 Finite Amplifier Gain in CT-ΣΔMs 126 -- 4.4 Time-constant Error in CT-ΣΔMs 128 -- 4.5 Finite Integrator Dynamics in CT-ΣΔMs 130 -- 4.5.1 Effect of Finite Gain-Bandwidth Product on CT-ΣΔMs 131.
4.5.2 Effect of Finite Slew Rate on CT-ΣΔMs 133 -- 4.6 Sources of Distortion in CT-ΣΔMs 134 -- 4.6.1 Nonlinearities in the Front-end Integrator 134 -- 4.6.2 Intersymbol Interference in the Feedback DAC 136 -- 4.7 Circuit Noise in CT-ΣΔMs 137 -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137 -- 4.7.2 Noise Analysis Considering SC Feedback DACs 139 -- 4.8 Clock Jitter in CT-ΣΔMs 140 -- 4.8.1 Jitter in Return-to-zero DACs 141 -- 4.8.2 Jitter in Non-return-to-zero DACs 142 -- 4.8.3 Jitter in Switched-capacitor DACs 144 -- 4.8.4 Lingering Effect of Clock Jitter Error 145 -- 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147 -- 4.9 Excess Loop Delay in CT-ΣΔMs 149 -- 4.9.1 Intuitive Analysis of ELD 149 -- 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151 -- 4.9.3 Alternative ELD Compensation Techniques 154 -- 4.10 Quantizer Metastability in CT-ΣΔMs 155 -- 4.11 Summary 159 -- References 160 -- 5 Behavioral Modeling and High-level Simulation 165 -- 5.1 Systematic Design Methodology of ΣΔ Modulators 165 -- 5.1.1 System Partitioning and Abstraction Levels 167 -- 5.1.2 Sizing Process 167 -- 5.2 Simulation Approaches for the High-level Evaluation of ΣΔMs 169 -- 5.2.1 Alternatives to Transistor-level Simulation 169 -- 5.2.2 Event-driven Behavioral Simulation Technique 171 -- 5.2.3 Programming Languages and Behavioral Modeling Platforms 172 -- 5.3 Implementing ΣΔM Behavioral Models 173 -- 5.3.1 From Circuit Analysis to Computational Algorithms 173 -- 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175 -- 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178 -- 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182 -- 5.4 Efficient Behavioral Modeling of ΣΔM Building Blocks using C-MEX S-functions 188 -- 5.4.1 Modeling of SC Integrators using S-functions 188 -- 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.
5.4.1.2 Input-referred Thermal Noise 191 -- 5.4.1.3 Switch On-resistance Dynamics 194 -- 5.4.1.4 Incomplete Settling Error 197 -- 5.4.2 Modeling of CT Integrators using S-functions 200 -- 5.4.2.1 Single-pole Gm-C Model 200 -- 5.4.2.2 Two-pole Dynamics Model 201 -- 5.4.2.3 Modeling Transconductors as S-functions 203 -- 5.4.3 Behavioral Modeling of Quantizers using S-functions 205 -- 5.4.3.1 Modeling Multi-level ADCs as S-functions 205 -- 5.4.3.2 Modeling Multi-level DACs as S-functions 207 -- 5.5 SIMSIDES: A SIMULINK-based Behavioral Simulator for ΣΔMs 209 -- 5.5.1 Model Libraries Included in SIMSIDES 210 -- 5.5.2 Structure of SIMSIDES and its User Interface 211 -- 5.5.2.1 Creating a New ΣΔM Block Diagram 212 -- 5.5.2.2 Setting Model Parameters 215 -- 5.5.2.3 Simulation Analyses 215 -- 5.6 Using SIMSIDES for High-level Sizing and Verification of ΣΔMs 216 -- 5.6.1 SC Second-order Single-Bit ΣΔM 216 -- 5.6.1.1 Effect of Amplifier Finite DC Gain 218 -- 5.6.1.2 Effect of Thermal Noise 218 -- 5.6.1.3 Effect of the Incomplete Settling Error 220 -- 5.6.1.4 Cumulative Effect of All Errors 221 -- 5.6.2 CT Fifth-order Cascade 3-2 Multi-bit ΣΔM 224 -- 5.6.2.1 Effect of Nonideal Effects 227 -- 5.6.2.2 High-level Synthesis and Verification 229 -- 5.7 Summary 231 -- References 231 -- 6 Automated Design and Optimization of 𝚺𝚫Ms 235 -- 6.1 Architecture Exploration and Selection: Schreier’s Toolbox 236 -- 6.1.1 Basic Functions of Schreier’s Delta-Sigma Toolbox 236 -- 6.1.2 Synthesis of a Fourth-order CRFF LP/BP SC-ΣΔM with Tunable Notch 238 -- 6.1.3 Synthesis of a Fourth-order BP CT-ΣΔM with Tunable Notch 240 -- 6.2 Optimization-based High-level Synthesis of ΣΔ Modulators 245 -- 6.2.1 Combining Behavioral Simulation and Optimization 246 -- 6.2.2 Using Simulated Annealing as Optimization Engine 247 -- 6.2.3 Combining SIMSIDES with MATLAB Optimizers 253 -- 6.3 Lifting Method and Hardware Acceleration to Optimize CT-ΣΔMs 255.
6.3.1 Hardware Emulation of CT-ΣΔMs on an FPGA 257 -- 6.3.2 GPU-accelerated Computing of CT-ΣΔMs 258 -- 6.4 Using Multi-objective Evolutionary Algorithms to Optimize ΣΔMs 259 -- 6.4.1 Combining MOEA with SIMSIDES 261 -- 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT-ΣΔMs 262 -- 6.5 Summary 269 -- References 269 -- 7 Electrical Design of 𝚺𝚫Ms: From Systems to Circuits 271 -- 7.1 Macromodeling ΣΔMs 272 -- 7.1.1 SC Integrator Macromodel 272 -- 7.1.1.1 Switch Macromodel 272 -- 7.1.1.2 OTA Macromodel 274 -- 7.1.2 CT Integrator Macromodel 274 -- 7.1.2.1 Active-RC Integrators 274 -- 7.1.2.2 Gm-C Integrators 274 -- 7.1.3 Nonlinear OTA Transconductor 275 -- 7.1.4 Embedded Flash ADC Macromodel 276 -- 7.1.5 Feedback DAC Macromodel 277 -- 7.2 Examples of ΣΔM Macromodels 279 -- 7.2.1 SC Second-order Example 279 -- 7.2.2 Second-order Active-RC ΣΔM 283 -- 7.3 Including Noise in Transient Electrical Simulations of ΣΔMs 286 -- 7.3.1 Generating and Injecting Noise Data Sequences in HSPICE 287 -- 7.3.2 Analyzing the Impact of the Main Noise Sources in SC Integrators 289 -- 7.3.3 Generating and Injecting Flicker Noise Sources in Electrical Simulations 289 -- 7.3.4 Test Bench to Include Noise in the Simulation of ΣΔMs 293 -- 7.4 Processing ΣΔM Output Results of Electrical Simulations 294 -- 7.5 Summary 298 -- References 298 -- 8 Design Considerations of 𝚺𝚫M Subcircuits 301 -- 8.1 Design Considerations of CMOS Switches 302 -- 8.1.1 Trade-Off Between Ron and the CMOS Switch Drain/Source Parasitic Capacitances 302 -- 8.1.2 Characterizing the Nonlinear Behavior of Ron 302 -- 8.1.3 Influence of Technology Downscaling on the Design of Switches 304 -- 8.1.4 Evaluating Harmonic Distortion due to CMOS Switches 305 -- 8.2 Design Considerations of Operational Amplifiers 308 -- 8.2.1 Typical Amplifier Topologies 309 -- 8.2.2 Common-mode Feedback Networks 311.
8.2.3 Characterization of the Amplifier in AC 313 -- 8.2.4 Characterization of the Amplifier in DC 313 -- 8.2.5 Characterization of the Amplifier Gain Nonlinearity 316 -- 8.3 Design Considerations of Transconductors 317 -- 8.3.1 Highly Linear Front-end Transconductor 318 -- 8.3.2 Loop-filter Transconductors 320 -- 8.3.3 Widely Programmable Transconductors 323 -- 8.4 Design Considerations of Comparators 324 -- 8.4.1 Regenerative Latch-based Comparators 325 -- 8.4.2 Design Guidelines of Comparators 327 -- 8.4.3 Characterization of Offset and Hysteresis Based on the Input-ramp Method 328 -- 8.4.4 Characterization of Offset and Hysteresis Based on the Bisectional Method 328 -- 8.4.5 Characterizing the Comparison Time 330 -- 8.5 Design Considerations of Current-Steering DACs 332 -- 8.5.1 Fundamentals and Basic Concepts of CS DACs 333 -- 8.5.2 Practical Realization of CS DACs 333 -- 8.5.3 Current Cell Circuits, Error Limitations, and Design Criteria 336 -- 8.5.4 CS 4-bit DAC Example 336 -- 8.6 Summary 338 -- References 338 -- 9 Practical Realization of 𝚺𝚫Ms: From Circuits to Chips 341 -- 9.1 Auxiliary ΣΔM Building Blocks 341 -- 9.1.1 Clock-phase Generators 342 -- 9.1.1.1 Phase Generation 342 -- 9.1.1.2 Phase Buffering 342 -- 9.1.1.3 Phase Distribution 344 -- 9.1.2 Generation of Common-mode Voltage, Reference Voltage, and Bias Currents 345 -- 9.1.2.1 Bandgap Circuit 345 -- 9.1.2.2 Reference Voltage Generator 345 -- 9.1.2.3 Master Bias Current Generator 346 -- 9.1.2.4 Common-mode Voltage Generator 346 -- 9.1.3 Additional Digital Logic 347 -- 9.2 Layout Design, Floorplanning, and Practical Issues 348 -- 9.2.1 Layout Floorplanning 348 -- 9.2.1.1 Divide Layout into Different Parts or Regions 348 -- 9.2.1.2 Shield Sensitive ΣΔM Analog Subcircuits from Switching Noise 349 -- 9.2.1.3 Buses to Distribute Signals Shared by Different ΣΔM Parts 349 -- 9.2.1.4 Be Obsessive about Layout Symmetry and Details of Analog Parts 349 -- 9.2.2 I/O Pad Ring 350.
9.2.3 Importance of Layout Verification and Catastrophic Failure 350 -- 9.3 Chip Package, Test PCB, and Experimental Setup 354 -- 9.3.1 Bonding Diagram and Package 354 -- 9.3.2 Test PCB 355 -- 9.4 Experimental Test Set-Up 355 -- 9.4.1 Planning the Type and Number of Instruments Needed 357 -- 9.4.2 Connecting Lab Instruments 357 -- 9.4.3 Measurement Set-Up Example 358 -- 9.5 ΣΔM Design Examples and Case Studies 359 -- 9.5.1 Programmable-gain ΣΔMs for High Dynamic Range Sensor Interfaces 360 -- 9.5.1.1 Main Design Criteria and Performance Limitations 361 -- 9.5.1.2 SC Realization with Programmable Gain and Double Sampling 362 -- 9.5.1.3 Influence of Chopper Frequency on Flicker Noise 362 -- 9.5.2 Reconfigurable SC-ΣΔMs for Multi-standard Direct Conversion Receivers 364 -- 9.5.2.1 Power-scaling Circuit Techniques 367 -- 9.5.2.2 Experimental Results 368 -- 9.5.3 Using Widely-programmable Gm-LC BP-ΣΔMs for RF Digitizers 368 -- 9.5.3.1 Application Scenario 371 -- 9.5.3.2 Gm-LC BP-ΣΔM High-level Sizing 371 -- 9.5.3.3 BP CT-ΣΔM Loop-Filter Reconfiguration Techniques 375 -- 9.5.3.4 Embedded 4-bit Quantizer with Calibration 378 -- 9.5.3.5 Biasing, Digital Control Programmability and Testability 382 -- 9.6 Summary 385 -- References 386 -- 10 Frontiers, Trends and Challenges: Towards Next-generation 𝚺𝚫 Modulators 389 -- 10.1 State-of-the-Art ADCs: Nyquist-rate versus ΣΔ Converters 390 -- 10.1.1 Conversion Energy 391 -- 10.1.2 Figures of Merit 392 -- 10.2 Comparison of Different Categories of ΣΔ ADCs 393 -- 10.2.1 Aperture Plot of ΣΔMs 406 -- 10.2.2 Energy Plot of ΣΔMs 407 -- 10.3 Empirical and Statistical Analysis of State-of-the-Art ΣΔMs 408 -- 10.3.1 SC versus CT ΣΔMs 408 -- 10.3.2 Technology used in State-of-the-Art ΣΔMs 410 -- 10.3.3 Single-Loop versus Cascade ΣΔMs 410 -- 10.3.4 Single-bit versus Multi-bit ΣΔMs 411.
10.3.5 Low-pass versus Band-pass ΣΔMs 413 -- 10.3.6 Emerging ΣΔM Techniques 415 -- 10.4 Gigahertz-range ΣΔMs for RF-to-digital Conversion 415 -- 10.5 Enhanced Cascade ΣΔMs 418 -- 10.5.1 SMASH CT-ΣΔMs 418 -- 10.5.2 Two-stage 0-L MASH 419 -- 10.5.3 Stage-sharing Cascade ΣΔMs 420 -- 10.5.4 Multi-rate and Hybrid CT/DT ΣΔMs 420 -- 10.5.4.1 Upsampling Cascade MR-ΣΔMs 421 -- 10.5.4.2 Downsampling Hybrid CT/DT Cascade MR-ΣΔMs 422 -- 10.6 Power-efficient ΣΔM Loop-filter Techniques 423 -- 10.6.1 Inverter-based ΣΔMs 423 -- 10.6.2 Hybrid Active/Passive and Amplifier-less ΣΔMs 424 -- 10.6.3 Power-efficient Amplifier Techniques 426 -- 10.7 Hybrid ΣΔM/Nyquist-rate ADCs 428 -- 10.7.1 Multi-bit ΣΔM Quantizers based on Nyquist-rate ADCs 428 -- 10.7.2 Incremental ΣΔ ADCs 429 -- 10.8 Time-based ΣΔ ADCs 431 -- 10.8.1 ΣΔMs with VCO/PWM-based Quantization 432 -- 10.8.2 Scaling-friendly Mostly-digital ΣΔMs 433 -- 10.8.3 GRO-based ΣΔMs 434 -- 10.9 DAC Techniques for High-performance CT-ΣΔMs 436 -- 10.10 Classification of State-of-the-Art References 437 -- 10.11 Summary and Conclusions 437 -- References 438 -- A State-space Analysis of Clock Jitter in CT-𝚺𝚫Ms 463 -- A.1 State-space Representation of NTF (z) 463 -- A.2 Expectation Value of (Δqn)2 465 -- A.3 In-band Noise Power due to Clock Jitter 466 -- References 467 -- B SIMSIDES User Guide 469 -- B.1 Getting Started: Installing and Running SIMSIDES 470 -- B.2 Building and Editing ΣΔM Architectures in SIMSIDES 470 -- B.3 Analyzing ΣΔMs in SIMSIDES 473 -- B.3.1 Node Spectrum Analysis 474 -- B.3.2 Integrated Power Noise 474 -- B.3.3 SNR/SNDR 475 -- B.3.4 Harmonic Distortion 475 -- B.3.5 Integral and Differential Non-Linearity 477 -- B.3.6 Multi-tone Power Ratio 477.
B.3.7 Histogram 478 -- B.3.8 Parametric Analysis 478 -- B.3.9 Monte Carlo Analysis 479 -- B.4 Optimization Interface 480 -- B.5 Tutorial Example: Using SIMSIDES to Model and Analyze ΣΔMs 482 -- B.5.1 Creating the Cascade 2-1 ΣΔM Block Diagram in SIMSIDES 482 -- B.5.2 Setting Model Parameters 482 -- B.5.3 Computing the Output Spectrum 484 -- B.5.4 SNR versus Input Amplitude Level 486 -- B.5.5 Parametric Analysis Considering Only One Parameter 487 -- B.5.6 Parametric Analysis Considering Two Parameters 488 -- B.5.7 Computing Histograms 489 -- B.6 Getting Help 489 -- C SIMSIDES Block Libraries and Models 491 -- C.1 Overview of SIMSIDES Libraries 491 -- C.2 Ideal Libraries 492 -- C.2.1 Ideal Integrators 492 -- C.2.1.1 Building-block Model Purpose and Description 492 -- C.2.1.2 Model Parameters 493 -- C.2.2 Ideal Resonators 493 -- C.2.2.1 Ideal_LD_Resonator 493 -- C.2.2.2 Ideal_FE_Resonator 493 -- C.2.2.3 Ideal_CT_Resonator 493 -- C.2.3 Ideal Quantizers 494 -- C.2.3.1 Ideal_Comparator 494 -- C.2.3.2 Ideal_Comparator_for_SI 495 -- C.2.3.3 Ideal_Multibit_Quantizer 495 -- C.2.3.4 Ideal_Multibit_Quantizer_for_SI 496 -- C.2.3.5 Ideal_Multibit_Quantizer_levels 496 -- C.2.3.6 Ideal_Multibit_Quantizer_levels_SD2 496 -- C.2.3.7 Ideal_Sampler 496 -- C.2.4 Ideal D/A Converters 496 -- C.2.4.1 Ideal_DAC_for_SI 496 -- C.2.4.2 Ideal_DAC_dig_level_SD2 497 -- C.3 Real SC Building-Block Libraries 497 -- C.3.1 Real SC Integrators 497 -- C.3.2 Real SC Resonators 501 -- C.4 Real SI Building-Block Libraries 503 -- C.4.1 Real SI Integrators 503 -- C.4.2 Real SI Resonators 505 -- C.4.3 SI Errors and Model Parameters 506 -- C.4.3.1 Basic_SI_FE(LD)_Integrator and Basic_SI_FE(LD)_Resonator 506 -- C.4.3.2 SI_FE(LD)_Int_Finite_Conductance 507 -- C.4.3.3 SI_FE(LD)_Int_Finite_Conductance & Settling & ChargeInjection 508 -- C.5 Real CT Building-Block Libraries 508 -- C.5.1 Real CT Integrators 508 -- C.5.1.1 Model Parameters used in Transconductors and Gm-C Integrator Building Blocks 511.
C.5.1.2 Gm-MC Integrators 511 -- C.5.1.3 Active-RC Integrators 512 -- C.5.1.4 MOSFET-C Integrators 513 -- C.5.2 Real CT Resonators 513 -- C.5.2.1 Gm-C Resonators 514 -- C.5.2.2 Gm-LC Resonators 517 -- C.6 Real Quantizers & Comparators 517 -- C.7 Real D/A Converters 518 -- C.8 Auxiliary Blocks 519 -- Index 523.
Record Nr. UNINA-9910467356303321
Rosa José M. de la  
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sigma-delta converters : practical design guide / / José M. de la Rosa, University of Seville, Spain
Sigma-delta converters : practical design guide / / José M. de la Rosa, University of Seville, Spain
Autore Rosa José M. de la
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2019
Descrizione fisica 1 online resource (566 pages)
Disciplina 621.3815/9
Collana THEi Wiley ebooks.
Soggetto topico Metal oxide semiconductors, Complementary - Design and construction
Analog-to-digital converters - Design and construction
ISBN 1-119-27576-8
1-119-27575-X
1-119-27577-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xix -- Acknowledgements xxv -- List of Abbreviations xxvii -- 1 Introduction to 𝚺𝚫 Modulators: Fundamentals, Basic Architecture and Performance Metrics 1 -- 1.1 Basics of Analog-to-Digital Conversion 2 -- 1.1.1 Sampling 3 -- 1.1.2 Quantization 4 -- 1.1.3 Quantization White Noise Model 5 -- 1.1.4 Noise Shaping 8 -- 1.2 Sigma-Delta Modulation 9 -- 1.2.1 From Noise-shaped Systems to ΣΔ Modulators 10 -- 1.2.2 Performance Metrics of ΣΔMs 11 -- 1.3 The First-order ΣΔ Modulator 13 -- 1.4 Performance Enhancement and Taxonomy of ΣΔMs 16 -- 1.4.1 ΣΔM System-level Design Parameters and Strategies 17 -- 1.4.2 Classification of ΣΔMs 18 -- 1.5 Putting All The Pieces Together: From ΣΔMs to ΣΔ ADCs 19 -- 1.5.1 Some Words about ΣΔ Decimators 20 -- 1.6 ΣΔ DACs 22 -- 1.6.1 System Design Trade-offs and Signal Processing in ΣΔ DACs 22 -- 1.6.2 Implementation of Digital ΣΔMs used in DACs 24 -- 1.7 Summary 25 -- References 26 -- 2 Taxonomy of 𝚺𝚫 Architectures 29 -- 2.1 Second-order ΣΔ Modulators 30 -- 2.1.1 Alternative Representations of Second-order ΣΔMs 31 -- 2.1.2 Second-Order ΣΔM with Unity STF 34 -- 2.2 High-order Single-loop ΣΔMs 35 -- 2.3 Cascade ΣΔ Modulators 39 -- 2.3.1 SMASH ΣΔM Architectures 46 -- 2.4 Multi-bit ΣΔ Modulators 49 -- 2.4.1 Influence of Multi-bit DAC Errors 49 -- 2.4.2 Dynamic Element Matching Techniques 50 -- 2.4.3 Dual Quantization 53 -- 2.4.3.1 Dual-quantization Single-loop ΣΔMs 53 -- 2.4.3.2 Dual-quantization Cascade ΣΔMs 54 -- 2.5 Band-pass ΣΔ Modulators 55 -- 2.5.1 Quadrature BP-ΣΔMs 56 -- 2.5.2 The z → −z2 LP-BP Transformation 58 -- 2.5.3 BP-ΣΔMs with Optimized NTF 58 -- 2.5.4 Time-interleaved and Polyphase BP-ΣΔMs 61.
2.6 Continuous-time ΣΔ Modulators: Architecture and Basic Concepts 64 -- 2.6.1 An Intuitive Analysis of CT-ΣΔMs 66 -- 2.6.2 Some Words about Alias Rejection in CT-ΣΔMs 69 -- 2.7 DT-CT Transformation of ΣΔMs 70 -- 2.7.1 The Impulse-invariant Transformation 70 -- 2.7.2 DT-CT Transformation of a Second-order ΣΔM 72 -- 2.8 Direct Synthesis of CT-ΣΔMs 74 -- 2.9 Summary 76 -- References 76 -- 3 Circuit Errors in Switched-capacitor 𝚺𝚫 Modulators 83 -- 3.1 Overview of Nonidealities in Switched-capacitor ΣΔ Modulators 84 -- 3.2 Finite Amplifier Gain in SC-ΣΔMs 86 -- 3.3 Capacitor Mismatch in SC-ΣΔMs 90 -- 3.4 Integrator Settling Error in SC-ΣΔMs 91 -- 3.4.1 Behavioral Model for the Integrator Settling 91 -- 3.4.2 Linear Effect of Finite Amplifier Gain-Bandwidth Product 95 -- 3.4.3 Nonlinear Effect of Finite Amplifier Slew Rate 98 -- 3.4.4 Effect of Finite Switch On-resistance 100 -- 3.5 Circuit Noise in SC-ΣΔMs 101 -- 3.6 Clock Jitter in SC-ΣΔMs 105 -- 3.7 Sources of Distortion in SC-ΣΔMs 107 -- 3.7.1 Nonlinear Amplifier Gain 107 -- 3.7.2 Nonlinear Switch On-Resistance 109 -- 3.8 Case Study: High-level Sizing of a ΣΔM 111 -- 3.8.1 Ideal Modulator Performance 111 -- 3.8.2 Noise Leakages 112 -- 3.8.3 Circuit Noise 115 -- 3.8.4 Settling Error 116 -- 3.8.5 Overall High-Level Sizing and Noise Budget 117 -- 3.9 Summary 119 -- References 119 -- 4 Circuit Errors and Compensation Techniques in Continuous-time 𝚺𝚫 Modulators 123 -- 4.1 Overview of Nonidealities in Continuous-time ΣΔ Modulators 123 -- 4.2 CT Integrators and Resonators 124 -- 4.3 Finite Amplifier Gain in CT-ΣΔMs 126 -- 4.4 Time-constant Error in CT-ΣΔMs 128 -- 4.5 Finite Integrator Dynamics in CT-ΣΔMs 130 -- 4.5.1 Effect of Finite Gain-Bandwidth Product on CT-ΣΔMs 131.
4.5.2 Effect of Finite Slew Rate on CT-ΣΔMs 133 -- 4.6 Sources of Distortion in CT-ΣΔMs 134 -- 4.6.1 Nonlinearities in the Front-end Integrator 134 -- 4.6.2 Intersymbol Interference in the Feedback DAC 136 -- 4.7 Circuit Noise in CT-ΣΔMs 137 -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137 -- 4.7.2 Noise Analysis Considering SC Feedback DACs 139 -- 4.8 Clock Jitter in CT-ΣΔMs 140 -- 4.8.1 Jitter in Return-to-zero DACs 141 -- 4.8.2 Jitter in Non-return-to-zero DACs 142 -- 4.8.3 Jitter in Switched-capacitor DACs 144 -- 4.8.4 Lingering Effect of Clock Jitter Error 145 -- 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147 -- 4.9 Excess Loop Delay in CT-ΣΔMs 149 -- 4.9.1 Intuitive Analysis of ELD 149 -- 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151 -- 4.9.3 Alternative ELD Compensation Techniques 154 -- 4.10 Quantizer Metastability in CT-ΣΔMs 155 -- 4.11 Summary 159 -- References 160 -- 5 Behavioral Modeling and High-level Simulation 165 -- 5.1 Systematic Design Methodology of ΣΔ Modulators 165 -- 5.1.1 System Partitioning and Abstraction Levels 167 -- 5.1.2 Sizing Process 167 -- 5.2 Simulation Approaches for the High-level Evaluation of ΣΔMs 169 -- 5.2.1 Alternatives to Transistor-level Simulation 169 -- 5.2.2 Event-driven Behavioral Simulation Technique 171 -- 5.2.3 Programming Languages and Behavioral Modeling Platforms 172 -- 5.3 Implementing ΣΔM Behavioral Models 173 -- 5.3.1 From Circuit Analysis to Computational Algorithms 173 -- 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175 -- 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178 -- 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182 -- 5.4 Efficient Behavioral Modeling of ΣΔM Building Blocks using C-MEX S-functions 188 -- 5.4.1 Modeling of SC Integrators using S-functions 188 -- 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.
5.4.1.2 Input-referred Thermal Noise 191 -- 5.4.1.3 Switch On-resistance Dynamics 194 -- 5.4.1.4 Incomplete Settling Error 197 -- 5.4.2 Modeling of CT Integrators using S-functions 200 -- 5.4.2.1 Single-pole Gm-C Model 200 -- 5.4.2.2 Two-pole Dynamics Model 201 -- 5.4.2.3 Modeling Transconductors as S-functions 203 -- 5.4.3 Behavioral Modeling of Quantizers using S-functions 205 -- 5.4.3.1 Modeling Multi-level ADCs as S-functions 205 -- 5.4.3.2 Modeling Multi-level DACs as S-functions 207 -- 5.5 SIMSIDES: A SIMULINK-based Behavioral Simulator for ΣΔMs 209 -- 5.5.1 Model Libraries Included in SIMSIDES 210 -- 5.5.2 Structure of SIMSIDES and its User Interface 211 -- 5.5.2.1 Creating a New ΣΔM Block Diagram 212 -- 5.5.2.2 Setting Model Parameters 215 -- 5.5.2.3 Simulation Analyses 215 -- 5.6 Using SIMSIDES for High-level Sizing and Verification of ΣΔMs 216 -- 5.6.1 SC Second-order Single-Bit ΣΔM 216 -- 5.6.1.1 Effect of Amplifier Finite DC Gain 218 -- 5.6.1.2 Effect of Thermal Noise 218 -- 5.6.1.3 Effect of the Incomplete Settling Error 220 -- 5.6.1.4 Cumulative Effect of All Errors 221 -- 5.6.2 CT Fifth-order Cascade 3-2 Multi-bit ΣΔM 224 -- 5.6.2.1 Effect of Nonideal Effects 227 -- 5.6.2.2 High-level Synthesis and Verification 229 -- 5.7 Summary 231 -- References 231 -- 6 Automated Design and Optimization of 𝚺𝚫Ms 235 -- 6.1 Architecture Exploration and Selection: Schreier’s Toolbox 236 -- 6.1.1 Basic Functions of Schreier’s Delta-Sigma Toolbox 236 -- 6.1.2 Synthesis of a Fourth-order CRFF LP/BP SC-ΣΔM with Tunable Notch 238 -- 6.1.3 Synthesis of a Fourth-order BP CT-ΣΔM with Tunable Notch 240 -- 6.2 Optimization-based High-level Synthesis of ΣΔ Modulators 245 -- 6.2.1 Combining Behavioral Simulation and Optimization 246 -- 6.2.2 Using Simulated Annealing as Optimization Engine 247 -- 6.2.3 Combining SIMSIDES with MATLAB Optimizers 253 -- 6.3 Lifting Method and Hardware Acceleration to Optimize CT-ΣΔMs 255.
6.3.1 Hardware Emulation of CT-ΣΔMs on an FPGA 257 -- 6.3.2 GPU-accelerated Computing of CT-ΣΔMs 258 -- 6.4 Using Multi-objective Evolutionary Algorithms to Optimize ΣΔMs 259 -- 6.4.1 Combining MOEA with SIMSIDES 261 -- 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT-ΣΔMs 262 -- 6.5 Summary 269 -- References 269 -- 7 Electrical Design of 𝚺𝚫Ms: From Systems to Circuits 271 -- 7.1 Macromodeling ΣΔMs 272 -- 7.1.1 SC Integrator Macromodel 272 -- 7.1.1.1 Switch Macromodel 272 -- 7.1.1.2 OTA Macromodel 274 -- 7.1.2 CT Integrator Macromodel 274 -- 7.1.2.1 Active-RC Integrators 274 -- 7.1.2.2 Gm-C Integrators 274 -- 7.1.3 Nonlinear OTA Transconductor 275 -- 7.1.4 Embedded Flash ADC Macromodel 276 -- 7.1.5 Feedback DAC Macromodel 277 -- 7.2 Examples of ΣΔM Macromodels 279 -- 7.2.1 SC Second-order Example 279 -- 7.2.2 Second-order Active-RC ΣΔM 283 -- 7.3 Including Noise in Transient Electrical Simulations of ΣΔMs 286 -- 7.3.1 Generating and Injecting Noise Data Sequences in HSPICE 287 -- 7.3.2 Analyzing the Impact of the Main Noise Sources in SC Integrators 289 -- 7.3.3 Generating and Injecting Flicker Noise Sources in Electrical Simulations 289 -- 7.3.4 Test Bench to Include Noise in the Simulation of ΣΔMs 293 -- 7.4 Processing ΣΔM Output Results of Electrical Simulations 294 -- 7.5 Summary 298 -- References 298 -- 8 Design Considerations of 𝚺𝚫M Subcircuits 301 -- 8.1 Design Considerations of CMOS Switches 302 -- 8.1.1 Trade-Off Between Ron and the CMOS Switch Drain/Source Parasitic Capacitances 302 -- 8.1.2 Characterizing the Nonlinear Behavior of Ron 302 -- 8.1.3 Influence of Technology Downscaling on the Design of Switches 304 -- 8.1.4 Evaluating Harmonic Distortion due to CMOS Switches 305 -- 8.2 Design Considerations of Operational Amplifiers 308 -- 8.2.1 Typical Amplifier Topologies 309 -- 8.2.2 Common-mode Feedback Networks 311.
8.2.3 Characterization of the Amplifier in AC 313 -- 8.2.4 Characterization of the Amplifier in DC 313 -- 8.2.5 Characterization of the Amplifier Gain Nonlinearity 316 -- 8.3 Design Considerations of Transconductors 317 -- 8.3.1 Highly Linear Front-end Transconductor 318 -- 8.3.2 Loop-filter Transconductors 320 -- 8.3.3 Widely Programmable Transconductors 323 -- 8.4 Design Considerations of Comparators 324 -- 8.4.1 Regenerative Latch-based Comparators 325 -- 8.4.2 Design Guidelines of Comparators 327 -- 8.4.3 Characterization of Offset and Hysteresis Based on the Input-ramp Method 328 -- 8.4.4 Characterization of Offset and Hysteresis Based on the Bisectional Method 328 -- 8.4.5 Characterizing the Comparison Time 330 -- 8.5 Design Considerations of Current-Steering DACs 332 -- 8.5.1 Fundamentals and Basic Concepts of CS DACs 333 -- 8.5.2 Practical Realization of CS DACs 333 -- 8.5.3 Current Cell Circuits, Error Limitations, and Design Criteria 336 -- 8.5.4 CS 4-bit DAC Example 336 -- 8.6 Summary 338 -- References 338 -- 9 Practical Realization of 𝚺𝚫Ms: From Circuits to Chips 341 -- 9.1 Auxiliary ΣΔM Building Blocks 341 -- 9.1.1 Clock-phase Generators 342 -- 9.1.1.1 Phase Generation 342 -- 9.1.1.2 Phase Buffering 342 -- 9.1.1.3 Phase Distribution 344 -- 9.1.2 Generation of Common-mode Voltage, Reference Voltage, and Bias Currents 345 -- 9.1.2.1 Bandgap Circuit 345 -- 9.1.2.2 Reference Voltage Generator 345 -- 9.1.2.3 Master Bias Current Generator 346 -- 9.1.2.4 Common-mode Voltage Generator 346 -- 9.1.3 Additional Digital Logic 347 -- 9.2 Layout Design, Floorplanning, and Practical Issues 348 -- 9.2.1 Layout Floorplanning 348 -- 9.2.1.1 Divide Layout into Different Parts or Regions 348 -- 9.2.1.2 Shield Sensitive ΣΔM Analog Subcircuits from Switching Noise 349 -- 9.2.1.3 Buses to Distribute Signals Shared by Different ΣΔM Parts 349 -- 9.2.1.4 Be Obsessive about Layout Symmetry and Details of Analog Parts 349 -- 9.2.2 I/O Pad Ring 350.
9.2.3 Importance of Layout Verification and Catastrophic Failure 350 -- 9.3 Chip Package, Test PCB, and Experimental Setup 354 -- 9.3.1 Bonding Diagram and Package 354 -- 9.3.2 Test PCB 355 -- 9.4 Experimental Test Set-Up 355 -- 9.4.1 Planning the Type and Number of Instruments Needed 357 -- 9.4.2 Connecting Lab Instruments 357 -- 9.4.3 Measurement Set-Up Example 358 -- 9.5 ΣΔM Design Examples and Case Studies 359 -- 9.5.1 Programmable-gain ΣΔMs for High Dynamic Range Sensor Interfaces 360 -- 9.5.1.1 Main Design Criteria and Performance Limitations 361 -- 9.5.1.2 SC Realization with Programmable Gain and Double Sampling 362 -- 9.5.1.3 Influence of Chopper Frequency on Flicker Noise 362 -- 9.5.2 Reconfigurable SC-ΣΔMs for Multi-standard Direct Conversion Receivers 364 -- 9.5.2.1 Power-scaling Circuit Techniques 367 -- 9.5.2.2 Experimental Results 368 -- 9.5.3 Using Widely-programmable Gm-LC BP-ΣΔMs for RF Digitizers 368 -- 9.5.3.1 Application Scenario 371 -- 9.5.3.2 Gm-LC BP-ΣΔM High-level Sizing 371 -- 9.5.3.3 BP CT-ΣΔM Loop-Filter Reconfiguration Techniques 375 -- 9.5.3.4 Embedded 4-bit Quantizer with Calibration 378 -- 9.5.3.5 Biasing, Digital Control Programmability and Testability 382 -- 9.6 Summary 385 -- References 386 -- 10 Frontiers, Trends and Challenges: Towards Next-generation 𝚺𝚫 Modulators 389 -- 10.1 State-of-the-Art ADCs: Nyquist-rate versus ΣΔ Converters 390 -- 10.1.1 Conversion Energy 391 -- 10.1.2 Figures of Merit 392 -- 10.2 Comparison of Different Categories of ΣΔ ADCs 393 -- 10.2.1 Aperture Plot of ΣΔMs 406 -- 10.2.2 Energy Plot of ΣΔMs 407 -- 10.3 Empirical and Statistical Analysis of State-of-the-Art ΣΔMs 408 -- 10.3.1 SC versus CT ΣΔMs 408 -- 10.3.2 Technology used in State-of-the-Art ΣΔMs 410 -- 10.3.3 Single-Loop versus Cascade ΣΔMs 410 -- 10.3.4 Single-bit versus Multi-bit ΣΔMs 411.
10.3.5 Low-pass versus Band-pass ΣΔMs 413 -- 10.3.6 Emerging ΣΔM Techniques 415 -- 10.4 Gigahertz-range ΣΔMs for RF-to-digital Conversion 415 -- 10.5 Enhanced Cascade ΣΔMs 418 -- 10.5.1 SMASH CT-ΣΔMs 418 -- 10.5.2 Two-stage 0-L MASH 419 -- 10.5.3 Stage-sharing Cascade ΣΔMs 420 -- 10.5.4 Multi-rate and Hybrid CT/DT ΣΔMs 420 -- 10.5.4.1 Upsampling Cascade MR-ΣΔMs 421 -- 10.5.4.2 Downsampling Hybrid CT/DT Cascade MR-ΣΔMs 422 -- 10.6 Power-efficient ΣΔM Loop-filter Techniques 423 -- 10.6.1 Inverter-based ΣΔMs 423 -- 10.6.2 Hybrid Active/Passive and Amplifier-less ΣΔMs 424 -- 10.6.3 Power-efficient Amplifier Techniques 426 -- 10.7 Hybrid ΣΔM/Nyquist-rate ADCs 428 -- 10.7.1 Multi-bit ΣΔM Quantizers based on Nyquist-rate ADCs 428 -- 10.7.2 Incremental ΣΔ ADCs 429 -- 10.8 Time-based ΣΔ ADCs 431 -- 10.8.1 ΣΔMs with VCO/PWM-based Quantization 432 -- 10.8.2 Scaling-friendly Mostly-digital ΣΔMs 433 -- 10.8.3 GRO-based ΣΔMs 434 -- 10.9 DAC Techniques for High-performance CT-ΣΔMs 436 -- 10.10 Classification of State-of-the-Art References 437 -- 10.11 Summary and Conclusions 437 -- References 438 -- A State-space Analysis of Clock Jitter in CT-𝚺𝚫Ms 463 -- A.1 State-space Representation of NTF (z) 463 -- A.2 Expectation Value of (Δqn)2 465 -- A.3 In-band Noise Power due to Clock Jitter 466 -- References 467 -- B SIMSIDES User Guide 469 -- B.1 Getting Started: Installing and Running SIMSIDES 470 -- B.2 Building and Editing ΣΔM Architectures in SIMSIDES 470 -- B.3 Analyzing ΣΔMs in SIMSIDES 473 -- B.3.1 Node Spectrum Analysis 474 -- B.3.2 Integrated Power Noise 474 -- B.3.3 SNR/SNDR 475 -- B.3.4 Harmonic Distortion 475 -- B.3.5 Integral and Differential Non-Linearity 477 -- B.3.6 Multi-tone Power Ratio 477.
B.3.7 Histogram 478 -- B.3.8 Parametric Analysis 478 -- B.3.9 Monte Carlo Analysis 479 -- B.4 Optimization Interface 480 -- B.5 Tutorial Example: Using SIMSIDES to Model and Analyze ΣΔMs 482 -- B.5.1 Creating the Cascade 2-1 ΣΔM Block Diagram in SIMSIDES 482 -- B.5.2 Setting Model Parameters 482 -- B.5.3 Computing the Output Spectrum 484 -- B.5.4 SNR versus Input Amplitude Level 486 -- B.5.5 Parametric Analysis Considering Only One Parameter 487 -- B.5.6 Parametric Analysis Considering Two Parameters 488 -- B.5.7 Computing Histograms 489 -- B.6 Getting Help 489 -- C SIMSIDES Block Libraries and Models 491 -- C.1 Overview of SIMSIDES Libraries 491 -- C.2 Ideal Libraries 492 -- C.2.1 Ideal Integrators 492 -- C.2.1.1 Building-block Model Purpose and Description 492 -- C.2.1.2 Model Parameters 493 -- C.2.2 Ideal Resonators 493 -- C.2.2.1 Ideal_LD_Resonator 493 -- C.2.2.2 Ideal_FE_Resonator 493 -- C.2.2.3 Ideal_CT_Resonator 493 -- C.2.3 Ideal Quantizers 494 -- C.2.3.1 Ideal_Comparator 494 -- C.2.3.2 Ideal_Comparator_for_SI 495 -- C.2.3.3 Ideal_Multibit_Quantizer 495 -- C.2.3.4 Ideal_Multibit_Quantizer_for_SI 496 -- C.2.3.5 Ideal_Multibit_Quantizer_levels 496 -- C.2.3.6 Ideal_Multibit_Quantizer_levels_SD2 496 -- C.2.3.7 Ideal_Sampler 496 -- C.2.4 Ideal D/A Converters 496 -- C.2.4.1 Ideal_DAC_for_SI 496 -- C.2.4.2 Ideal_DAC_dig_level_SD2 497 -- C.3 Real SC Building-Block Libraries 497 -- C.3.1 Real SC Integrators 497 -- C.3.2 Real SC Resonators 501 -- C.4 Real SI Building-Block Libraries 503 -- C.4.1 Real SI Integrators 503 -- C.4.2 Real SI Resonators 505 -- C.4.3 SI Errors and Model Parameters 506 -- C.4.3.1 Basic_SI_FE(LD)_Integrator and Basic_SI_FE(LD)_Resonator 506 -- C.4.3.2 SI_FE(LD)_Int_Finite_Conductance 507 -- C.4.3.3 SI_FE(LD)_Int_Finite_Conductance & Settling & ChargeInjection 508 -- C.5 Real CT Building-Block Libraries 508 -- C.5.1 Real CT Integrators 508 -- C.5.1.1 Model Parameters used in Transconductors and Gm-C Integrator Building Blocks 511.
C.5.1.2 Gm-MC Integrators 511 -- C.5.1.3 Active-RC Integrators 512 -- C.5.1.4 MOSFET-C Integrators 513 -- C.5.2 Real CT Resonators 513 -- C.5.2.1 Gm-C Resonators 514 -- C.5.2.2 Gm-LC Resonators 517 -- C.6 Real Quantizers & Comparators 517 -- C.7 Real D/A Converters 518 -- C.8 Auxiliary Blocks 519 -- Index 523.
Record Nr. UNINA-9910529319903321
Rosa José M. de la  
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sigma-delta converters : practical design guide / / José M. de la Rosa, University of Seville, Spain
Sigma-delta converters : practical design guide / / José M. de la Rosa, University of Seville, Spain
Autore Rosa José M. de la
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2019
Descrizione fisica 1 online resource (566 pages)
Disciplina 621.3815/9
Collana THEi Wiley ebooks.
Soggetto topico Metal oxide semiconductors, Complementary - Design and construction
Analog-to-digital converters - Design and construction
ISBN 1-119-27576-8
1-119-27575-X
1-119-27577-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xix -- Acknowledgements xxv -- List of Abbreviations xxvii -- 1 Introduction to 𝚺𝚫 Modulators: Fundamentals, Basic Architecture and Performance Metrics 1 -- 1.1 Basics of Analog-to-Digital Conversion 2 -- 1.1.1 Sampling 3 -- 1.1.2 Quantization 4 -- 1.1.3 Quantization White Noise Model 5 -- 1.1.4 Noise Shaping 8 -- 1.2 Sigma-Delta Modulation 9 -- 1.2.1 From Noise-shaped Systems to ΣΔ Modulators 10 -- 1.2.2 Performance Metrics of ΣΔMs 11 -- 1.3 The First-order ΣΔ Modulator 13 -- 1.4 Performance Enhancement and Taxonomy of ΣΔMs 16 -- 1.4.1 ΣΔM System-level Design Parameters and Strategies 17 -- 1.4.2 Classification of ΣΔMs 18 -- 1.5 Putting All The Pieces Together: From ΣΔMs to ΣΔ ADCs 19 -- 1.5.1 Some Words about ΣΔ Decimators 20 -- 1.6 ΣΔ DACs 22 -- 1.6.1 System Design Trade-offs and Signal Processing in ΣΔ DACs 22 -- 1.6.2 Implementation of Digital ΣΔMs used in DACs 24 -- 1.7 Summary 25 -- References 26 -- 2 Taxonomy of 𝚺𝚫 Architectures 29 -- 2.1 Second-order ΣΔ Modulators 30 -- 2.1.1 Alternative Representations of Second-order ΣΔMs 31 -- 2.1.2 Second-Order ΣΔM with Unity STF 34 -- 2.2 High-order Single-loop ΣΔMs 35 -- 2.3 Cascade ΣΔ Modulators 39 -- 2.3.1 SMASH ΣΔM Architectures 46 -- 2.4 Multi-bit ΣΔ Modulators 49 -- 2.4.1 Influence of Multi-bit DAC Errors 49 -- 2.4.2 Dynamic Element Matching Techniques 50 -- 2.4.3 Dual Quantization 53 -- 2.4.3.1 Dual-quantization Single-loop ΣΔMs 53 -- 2.4.3.2 Dual-quantization Cascade ΣΔMs 54 -- 2.5 Band-pass ΣΔ Modulators 55 -- 2.5.1 Quadrature BP-ΣΔMs 56 -- 2.5.2 The z → −z2 LP-BP Transformation 58 -- 2.5.3 BP-ΣΔMs with Optimized NTF 58 -- 2.5.4 Time-interleaved and Polyphase BP-ΣΔMs 61.
2.6 Continuous-time ΣΔ Modulators: Architecture and Basic Concepts 64 -- 2.6.1 An Intuitive Analysis of CT-ΣΔMs 66 -- 2.6.2 Some Words about Alias Rejection in CT-ΣΔMs 69 -- 2.7 DT-CT Transformation of ΣΔMs 70 -- 2.7.1 The Impulse-invariant Transformation 70 -- 2.7.2 DT-CT Transformation of a Second-order ΣΔM 72 -- 2.8 Direct Synthesis of CT-ΣΔMs 74 -- 2.9 Summary 76 -- References 76 -- 3 Circuit Errors in Switched-capacitor 𝚺𝚫 Modulators 83 -- 3.1 Overview of Nonidealities in Switched-capacitor ΣΔ Modulators 84 -- 3.2 Finite Amplifier Gain in SC-ΣΔMs 86 -- 3.3 Capacitor Mismatch in SC-ΣΔMs 90 -- 3.4 Integrator Settling Error in SC-ΣΔMs 91 -- 3.4.1 Behavioral Model for the Integrator Settling 91 -- 3.4.2 Linear Effect of Finite Amplifier Gain-Bandwidth Product 95 -- 3.4.3 Nonlinear Effect of Finite Amplifier Slew Rate 98 -- 3.4.4 Effect of Finite Switch On-resistance 100 -- 3.5 Circuit Noise in SC-ΣΔMs 101 -- 3.6 Clock Jitter in SC-ΣΔMs 105 -- 3.7 Sources of Distortion in SC-ΣΔMs 107 -- 3.7.1 Nonlinear Amplifier Gain 107 -- 3.7.2 Nonlinear Switch On-Resistance 109 -- 3.8 Case Study: High-level Sizing of a ΣΔM 111 -- 3.8.1 Ideal Modulator Performance 111 -- 3.8.2 Noise Leakages 112 -- 3.8.3 Circuit Noise 115 -- 3.8.4 Settling Error 116 -- 3.8.5 Overall High-Level Sizing and Noise Budget 117 -- 3.9 Summary 119 -- References 119 -- 4 Circuit Errors and Compensation Techniques in Continuous-time 𝚺𝚫 Modulators 123 -- 4.1 Overview of Nonidealities in Continuous-time ΣΔ Modulators 123 -- 4.2 CT Integrators and Resonators 124 -- 4.3 Finite Amplifier Gain in CT-ΣΔMs 126 -- 4.4 Time-constant Error in CT-ΣΔMs 128 -- 4.5 Finite Integrator Dynamics in CT-ΣΔMs 130 -- 4.5.1 Effect of Finite Gain-Bandwidth Product on CT-ΣΔMs 131.
4.5.2 Effect of Finite Slew Rate on CT-ΣΔMs 133 -- 4.6 Sources of Distortion in CT-ΣΔMs 134 -- 4.6.1 Nonlinearities in the Front-end Integrator 134 -- 4.6.2 Intersymbol Interference in the Feedback DAC 136 -- 4.7 Circuit Noise in CT-ΣΔMs 137 -- 4.7.1 Noise Analysis Considering NRZ Feedback DACs 137 -- 4.7.2 Noise Analysis Considering SC Feedback DACs 139 -- 4.8 Clock Jitter in CT-ΣΔMs 140 -- 4.8.1 Jitter in Return-to-zero DACs 141 -- 4.8.2 Jitter in Non-return-to-zero DACs 142 -- 4.8.3 Jitter in Switched-capacitor DACs 144 -- 4.8.4 Lingering Effect of Clock Jitter Error 145 -- 4.8.5 Reducing the Effect of Clock Jitter with FIR and Sine-shaped DACs 147 -- 4.9 Excess Loop Delay in CT-ΣΔMs 149 -- 4.9.1 Intuitive Analysis of ELD 149 -- 4.9.2 Analysis of ELD based on Impulse-invariant DT-CT Transformation 151 -- 4.9.3 Alternative ELD Compensation Techniques 154 -- 4.10 Quantizer Metastability in CT-ΣΔMs 155 -- 4.11 Summary 159 -- References 160 -- 5 Behavioral Modeling and High-level Simulation 165 -- 5.1 Systematic Design Methodology of ΣΔ Modulators 165 -- 5.1.1 System Partitioning and Abstraction Levels 167 -- 5.1.2 Sizing Process 167 -- 5.2 Simulation Approaches for the High-level Evaluation of ΣΔMs 169 -- 5.2.1 Alternatives to Transistor-level Simulation 169 -- 5.2.2 Event-driven Behavioral Simulation Technique 171 -- 5.2.3 Programming Languages and Behavioral Modeling Platforms 172 -- 5.3 Implementing ΣΔM Behavioral Models 173 -- 5.3.1 From Circuit Analysis to Computational Algorithms 173 -- 5.3.2 Time-domain versus Frequency-domain Behavioral Models 175 -- 5.3.3 Implementing Time-domain Behavioral Models in MATLAB 178 -- 5.3.4 Building Time-domain Behavioral Models as SIMULINK C-MEX S-functions 182 -- 5.4 Efficient Behavioral Modeling of ΣΔM Building Blocks using C-MEX S-functions 188 -- 5.4.1 Modeling of SC Integrators using S-functions 188 -- 5.4.1.1 Capacitor Mismatch and Nonlinearity 190.
5.4.1.2 Input-referred Thermal Noise 191 -- 5.4.1.3 Switch On-resistance Dynamics 194 -- 5.4.1.4 Incomplete Settling Error 197 -- 5.4.2 Modeling of CT Integrators using S-functions 200 -- 5.4.2.1 Single-pole Gm-C Model 200 -- 5.4.2.2 Two-pole Dynamics Model 201 -- 5.4.2.3 Modeling Transconductors as S-functions 203 -- 5.4.3 Behavioral Modeling of Quantizers using S-functions 205 -- 5.4.3.1 Modeling Multi-level ADCs as S-functions 205 -- 5.4.3.2 Modeling Multi-level DACs as S-functions 207 -- 5.5 SIMSIDES: A SIMULINK-based Behavioral Simulator for ΣΔMs 209 -- 5.5.1 Model Libraries Included in SIMSIDES 210 -- 5.5.2 Structure of SIMSIDES and its User Interface 211 -- 5.5.2.1 Creating a New ΣΔM Block Diagram 212 -- 5.5.2.2 Setting Model Parameters 215 -- 5.5.2.3 Simulation Analyses 215 -- 5.6 Using SIMSIDES for High-level Sizing and Verification of ΣΔMs 216 -- 5.6.1 SC Second-order Single-Bit ΣΔM 216 -- 5.6.1.1 Effect of Amplifier Finite DC Gain 218 -- 5.6.1.2 Effect of Thermal Noise 218 -- 5.6.1.3 Effect of the Incomplete Settling Error 220 -- 5.6.1.4 Cumulative Effect of All Errors 221 -- 5.6.2 CT Fifth-order Cascade 3-2 Multi-bit ΣΔM 224 -- 5.6.2.1 Effect of Nonideal Effects 227 -- 5.6.2.2 High-level Synthesis and Verification 229 -- 5.7 Summary 231 -- References 231 -- 6 Automated Design and Optimization of 𝚺𝚫Ms 235 -- 6.1 Architecture Exploration and Selection: Schreier’s Toolbox 236 -- 6.1.1 Basic Functions of Schreier’s Delta-Sigma Toolbox 236 -- 6.1.2 Synthesis of a Fourth-order CRFF LP/BP SC-ΣΔM with Tunable Notch 238 -- 6.1.3 Synthesis of a Fourth-order BP CT-ΣΔM with Tunable Notch 240 -- 6.2 Optimization-based High-level Synthesis of ΣΔ Modulators 245 -- 6.2.1 Combining Behavioral Simulation and Optimization 246 -- 6.2.2 Using Simulated Annealing as Optimization Engine 247 -- 6.2.3 Combining SIMSIDES with MATLAB Optimizers 253 -- 6.3 Lifting Method and Hardware Acceleration to Optimize CT-ΣΔMs 255.
6.3.1 Hardware Emulation of CT-ΣΔMs on an FPGA 257 -- 6.3.2 GPU-accelerated Computing of CT-ΣΔMs 258 -- 6.4 Using Multi-objective Evolutionary Algorithms to Optimize ΣΔMs 259 -- 6.4.1 Combining MOEA with SIMSIDES 261 -- 6.4.2 Applying MOEA and SIMSIDES to the Synthesis of CT-ΣΔMs 262 -- 6.5 Summary 269 -- References 269 -- 7 Electrical Design of 𝚺𝚫Ms: From Systems to Circuits 271 -- 7.1 Macromodeling ΣΔMs 272 -- 7.1.1 SC Integrator Macromodel 272 -- 7.1.1.1 Switch Macromodel 272 -- 7.1.1.2 OTA Macromodel 274 -- 7.1.2 CT Integrator Macromodel 274 -- 7.1.2.1 Active-RC Integrators 274 -- 7.1.2.2 Gm-C Integrators 274 -- 7.1.3 Nonlinear OTA Transconductor 275 -- 7.1.4 Embedded Flash ADC Macromodel 276 -- 7.1.5 Feedback DAC Macromodel 277 -- 7.2 Examples of ΣΔM Macromodels 279 -- 7.2.1 SC Second-order Example 279 -- 7.2.2 Second-order Active-RC ΣΔM 283 -- 7.3 Including Noise in Transient Electrical Simulations of ΣΔMs 286 -- 7.3.1 Generating and Injecting Noise Data Sequences in HSPICE 287 -- 7.3.2 Analyzing the Impact of the Main Noise Sources in SC Integrators 289 -- 7.3.3 Generating and Injecting Flicker Noise Sources in Electrical Simulations 289 -- 7.3.4 Test Bench to Include Noise in the Simulation of ΣΔMs 293 -- 7.4 Processing ΣΔM Output Results of Electrical Simulations 294 -- 7.5 Summary 298 -- References 298 -- 8 Design Considerations of 𝚺𝚫M Subcircuits 301 -- 8.1 Design Considerations of CMOS Switches 302 -- 8.1.1 Trade-Off Between Ron and the CMOS Switch Drain/Source Parasitic Capacitances 302 -- 8.1.2 Characterizing the Nonlinear Behavior of Ron 302 -- 8.1.3 Influence of Technology Downscaling on the Design of Switches 304 -- 8.1.4 Evaluating Harmonic Distortion due to CMOS Switches 305 -- 8.2 Design Considerations of Operational Amplifiers 308 -- 8.2.1 Typical Amplifier Topologies 309 -- 8.2.2 Common-mode Feedback Networks 311.
8.2.3 Characterization of the Amplifier in AC 313 -- 8.2.4 Characterization of the Amplifier in DC 313 -- 8.2.5 Characterization of the Amplifier Gain Nonlinearity 316 -- 8.3 Design Considerations of Transconductors 317 -- 8.3.1 Highly Linear Front-end Transconductor 318 -- 8.3.2 Loop-filter Transconductors 320 -- 8.3.3 Widely Programmable Transconductors 323 -- 8.4 Design Considerations of Comparators 324 -- 8.4.1 Regenerative Latch-based Comparators 325 -- 8.4.2 Design Guidelines of Comparators 327 -- 8.4.3 Characterization of Offset and Hysteresis Based on the Input-ramp Method 328 -- 8.4.4 Characterization of Offset and Hysteresis Based on the Bisectional Method 328 -- 8.4.5 Characterizing the Comparison Time 330 -- 8.5 Design Considerations of Current-Steering DACs 332 -- 8.5.1 Fundamentals and Basic Concepts of CS DACs 333 -- 8.5.2 Practical Realization of CS DACs 333 -- 8.5.3 Current Cell Circuits, Error Limitations, and Design Criteria 336 -- 8.5.4 CS 4-bit DAC Example 336 -- 8.6 Summary 338 -- References 338 -- 9 Practical Realization of 𝚺𝚫Ms: From Circuits to Chips 341 -- 9.1 Auxiliary ΣΔM Building Blocks 341 -- 9.1.1 Clock-phase Generators 342 -- 9.1.1.1 Phase Generation 342 -- 9.1.1.2 Phase Buffering 342 -- 9.1.1.3 Phase Distribution 344 -- 9.1.2 Generation of Common-mode Voltage, Reference Voltage, and Bias Currents 345 -- 9.1.2.1 Bandgap Circuit 345 -- 9.1.2.2 Reference Voltage Generator 345 -- 9.1.2.3 Master Bias Current Generator 346 -- 9.1.2.4 Common-mode Voltage Generator 346 -- 9.1.3 Additional Digital Logic 347 -- 9.2 Layout Design, Floorplanning, and Practical Issues 348 -- 9.2.1 Layout Floorplanning 348 -- 9.2.1.1 Divide Layout into Different Parts or Regions 348 -- 9.2.1.2 Shield Sensitive ΣΔM Analog Subcircuits from Switching Noise 349 -- 9.2.1.3 Buses to Distribute Signals Shared by Different ΣΔM Parts 349 -- 9.2.1.4 Be Obsessive about Layout Symmetry and Details of Analog Parts 349 -- 9.2.2 I/O Pad Ring 350.
9.2.3 Importance of Layout Verification and Catastrophic Failure 350 -- 9.3 Chip Package, Test PCB, and Experimental Setup 354 -- 9.3.1 Bonding Diagram and Package 354 -- 9.3.2 Test PCB 355 -- 9.4 Experimental Test Set-Up 355 -- 9.4.1 Planning the Type and Number of Instruments Needed 357 -- 9.4.2 Connecting Lab Instruments 357 -- 9.4.3 Measurement Set-Up Example 358 -- 9.5 ΣΔM Design Examples and Case Studies 359 -- 9.5.1 Programmable-gain ΣΔMs for High Dynamic Range Sensor Interfaces 360 -- 9.5.1.1 Main Design Criteria and Performance Limitations 361 -- 9.5.1.2 SC Realization with Programmable Gain and Double Sampling 362 -- 9.5.1.3 Influence of Chopper Frequency on Flicker Noise 362 -- 9.5.2 Reconfigurable SC-ΣΔMs for Multi-standard Direct Conversion Receivers 364 -- 9.5.2.1 Power-scaling Circuit Techniques 367 -- 9.5.2.2 Experimental Results 368 -- 9.5.3 Using Widely-programmable Gm-LC BP-ΣΔMs for RF Digitizers 368 -- 9.5.3.1 Application Scenario 371 -- 9.5.3.2 Gm-LC BP-ΣΔM High-level Sizing 371 -- 9.5.3.3 BP CT-ΣΔM Loop-Filter Reconfiguration Techniques 375 -- 9.5.3.4 Embedded 4-bit Quantizer with Calibration 378 -- 9.5.3.5 Biasing, Digital Control Programmability and Testability 382 -- 9.6 Summary 385 -- References 386 -- 10 Frontiers, Trends and Challenges: Towards Next-generation 𝚺𝚫 Modulators 389 -- 10.1 State-of-the-Art ADCs: Nyquist-rate versus ΣΔ Converters 390 -- 10.1.1 Conversion Energy 391 -- 10.1.2 Figures of Merit 392 -- 10.2 Comparison of Different Categories of ΣΔ ADCs 393 -- 10.2.1 Aperture Plot of ΣΔMs 406 -- 10.2.2 Energy Plot of ΣΔMs 407 -- 10.3 Empirical and Statistical Analysis of State-of-the-Art ΣΔMs 408 -- 10.3.1 SC versus CT ΣΔMs 408 -- 10.3.2 Technology used in State-of-the-Art ΣΔMs 410 -- 10.3.3 Single-Loop versus Cascade ΣΔMs 410 -- 10.3.4 Single-bit versus Multi-bit ΣΔMs 411.
10.3.5 Low-pass versus Band-pass ΣΔMs 413 -- 10.3.6 Emerging ΣΔM Techniques 415 -- 10.4 Gigahertz-range ΣΔMs for RF-to-digital Conversion 415 -- 10.5 Enhanced Cascade ΣΔMs 418 -- 10.5.1 SMASH CT-ΣΔMs 418 -- 10.5.2 Two-stage 0-L MASH 419 -- 10.5.3 Stage-sharing Cascade ΣΔMs 420 -- 10.5.4 Multi-rate and Hybrid CT/DT ΣΔMs 420 -- 10.5.4.1 Upsampling Cascade MR-ΣΔMs 421 -- 10.5.4.2 Downsampling Hybrid CT/DT Cascade MR-ΣΔMs 422 -- 10.6 Power-efficient ΣΔM Loop-filter Techniques 423 -- 10.6.1 Inverter-based ΣΔMs 423 -- 10.6.2 Hybrid Active/Passive and Amplifier-less ΣΔMs 424 -- 10.6.3 Power-efficient Amplifier Techniques 426 -- 10.7 Hybrid ΣΔM/Nyquist-rate ADCs 428 -- 10.7.1 Multi-bit ΣΔM Quantizers based on Nyquist-rate ADCs 428 -- 10.7.2 Incremental ΣΔ ADCs 429 -- 10.8 Time-based ΣΔ ADCs 431 -- 10.8.1 ΣΔMs with VCO/PWM-based Quantization 432 -- 10.8.2 Scaling-friendly Mostly-digital ΣΔMs 433 -- 10.8.3 GRO-based ΣΔMs 434 -- 10.9 DAC Techniques for High-performance CT-ΣΔMs 436 -- 10.10 Classification of State-of-the-Art References 437 -- 10.11 Summary and Conclusions 437 -- References 438 -- A State-space Analysis of Clock Jitter in CT-𝚺𝚫Ms 463 -- A.1 State-space Representation of NTF (z) 463 -- A.2 Expectation Value of (Δqn)2 465 -- A.3 In-band Noise Power due to Clock Jitter 466 -- References 467 -- B SIMSIDES User Guide 469 -- B.1 Getting Started: Installing and Running SIMSIDES 470 -- B.2 Building and Editing ΣΔM Architectures in SIMSIDES 470 -- B.3 Analyzing ΣΔMs in SIMSIDES 473 -- B.3.1 Node Spectrum Analysis 474 -- B.3.2 Integrated Power Noise 474 -- B.3.3 SNR/SNDR 475 -- B.3.4 Harmonic Distortion 475 -- B.3.5 Integral and Differential Non-Linearity 477 -- B.3.6 Multi-tone Power Ratio 477.
B.3.7 Histogram 478 -- B.3.8 Parametric Analysis 478 -- B.3.9 Monte Carlo Analysis 479 -- B.4 Optimization Interface 480 -- B.5 Tutorial Example: Using SIMSIDES to Model and Analyze ΣΔMs 482 -- B.5.1 Creating the Cascade 2-1 ΣΔM Block Diagram in SIMSIDES 482 -- B.5.2 Setting Model Parameters 482 -- B.5.3 Computing the Output Spectrum 484 -- B.5.4 SNR versus Input Amplitude Level 486 -- B.5.5 Parametric Analysis Considering Only One Parameter 487 -- B.5.6 Parametric Analysis Considering Two Parameters 488 -- B.5.7 Computing Histograms 489 -- B.6 Getting Help 489 -- C SIMSIDES Block Libraries and Models 491 -- C.1 Overview of SIMSIDES Libraries 491 -- C.2 Ideal Libraries 492 -- C.2.1 Ideal Integrators 492 -- C.2.1.1 Building-block Model Purpose and Description 492 -- C.2.1.2 Model Parameters 493 -- C.2.2 Ideal Resonators 493 -- C.2.2.1 Ideal_LD_Resonator 493 -- C.2.2.2 Ideal_FE_Resonator 493 -- C.2.2.3 Ideal_CT_Resonator 493 -- C.2.3 Ideal Quantizers 494 -- C.2.3.1 Ideal_Comparator 494 -- C.2.3.2 Ideal_Comparator_for_SI 495 -- C.2.3.3 Ideal_Multibit_Quantizer 495 -- C.2.3.4 Ideal_Multibit_Quantizer_for_SI 496 -- C.2.3.5 Ideal_Multibit_Quantizer_levels 496 -- C.2.3.6 Ideal_Multibit_Quantizer_levels_SD2 496 -- C.2.3.7 Ideal_Sampler 496 -- C.2.4 Ideal D/A Converters 496 -- C.2.4.1 Ideal_DAC_for_SI 496 -- C.2.4.2 Ideal_DAC_dig_level_SD2 497 -- C.3 Real SC Building-Block Libraries 497 -- C.3.1 Real SC Integrators 497 -- C.3.2 Real SC Resonators 501 -- C.4 Real SI Building-Block Libraries 503 -- C.4.1 Real SI Integrators 503 -- C.4.2 Real SI Resonators 505 -- C.4.3 SI Errors and Model Parameters 506 -- C.4.3.1 Basic_SI_FE(LD)_Integrator and Basic_SI_FE(LD)_Resonator 506 -- C.4.3.2 SI_FE(LD)_Int_Finite_Conductance 507 -- C.4.3.3 SI_FE(LD)_Int_Finite_Conductance & Settling & ChargeInjection 508 -- C.5 Real CT Building-Block Libraries 508 -- C.5.1 Real CT Integrators 508 -- C.5.1.1 Model Parameters used in Transconductors and Gm-C Integrator Building Blocks 511.
C.5.1.2 Gm-MC Integrators 511 -- C.5.1.3 Active-RC Integrators 512 -- C.5.1.4 MOSFET-C Integrators 513 -- C.5.2 Real CT Resonators 513 -- C.5.2.1 Gm-C Resonators 514 -- C.5.2.2 Gm-LC Resonators 517 -- C.6 Real Quantizers & Comparators 517 -- C.7 Real D/A Converters 518 -- C.8 Auxiliary Blocks 519 -- Index 523.
Record Nr. UNINA-9910817046303321
Rosa José M. de la  
Hoboken, New Jersey, USA : , : Wiley-IEEE Press, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui