Foundations of pulsed power technology / / Janet Lehr and Pralhad Ron |
Autore | Lehr Janet |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2017] |
Descrizione fisica | 1 PDF (664 pages) |
Disciplina | 621.3815/34 |
Soggetto topico | Pulsed power systems |
ISBN |
1-119-30116-5
1-119-30117-3 1-118-88650-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foundations of Pulsed Power Technology; Contents; Preface; About the Authors; Acknowledgments; Introduction; Sources of Information; References; 1: Marx Generators and Marx-Like Circuits; 1.1 Operational Principles of Simple Marxes; 1.1.1 Marx Charge Cycle; 1.1.2 Marx Erection; 1.1.2.1 Switch Preionization by Ultraviolet Radiation; 1.1.2.2 Switch Overvoltages in an Ideal Marx; 1.1.3 Marx Discharge Cycle; 1.1.3.1 No Fire; 1.1.3.2 Equivalent Circuit Parameters During Discharge; 1.1.4 Load Effects on the Marx Discharge; 1.1.4.1 Capacitive Loads; 1.1.4.2 A Marx Charging a Resistive Load
1.2 Impulse Generators1.2.1 Exact Solutions; 1.2.2 Approximate Solutions; 1.2.3 Distributed Front Resistors; 1.3 Effects of Stray Capacitance on Marx Operation; 1.3.1 Voltage Division by Stray Capacitance; 1.3.2 Exploiting Stray Capacitance: The Wave Erection Marx; 1.3.3 The Effects of Interstage Coupling Capacitance; 1.4 Enhanced Triggering Techniques; 1.4.1 Capacitive Back-Coupling; 1.4.2 Resistive Back-Coupling; 1.4.3 Capacitive and Resistively Coupled Marx; 1.4.4 The Maxwell Marx; 1.5 Examples of Complex Marx Generators; 1.5.1 Hermes I and II; 1.5.2 PBFA and Z; 1.5.3 Aurora [9] 1.6 Marx Generator Variations1.6.1 Marx/PFN with Resistive Load; 1.6.2 Helical Line Marx Generator; 1.7 Other Design Considerations; 1.7.1 Charging Voltage and Number of Stages; 1.7.2 Insulation System; 1.7.3 Marx Capacitors; 1.7.4 Marx Spark Gaps; 1.7.5 Marx Resistors; 1.7.6 Marx Initiation; 1.7.7 Repetitive Operation; 1.7.8 Circuit Modeling; 1.8 Marx-Like Voltage-Multiplying Circuits; 1.8.1 The Spiral Generator; 1.8.2 Time Isolation Line Voltage Multiplier; 1.8.3 The LC Inversion Generator; 1.9 Design Examples; References; 2: Pulse Transformers; 2.1 Tesla Transformers 2.1.1 Equivalent Circuit and Design Equations2.1.2 Double Resonance and Waveforms; 2.1.3 Off Resonance and Waveforms; 2.1.4 Triple Resonance and Waveforms; 2.1.5 No Load and Waveforms; 2.1.6 Construction and Configurations; 2.2 Transmission Line Transformers; 2.2.1 Tapered Transmission Line; 2.2.1.1 Pulse Distortion; 2.2.1.2 The Theory of Small Reflections; 2.2.1.3 Gain of a Tapered Transmission Line Transformer; 2.2.1.4 The Exponential Tapered Transmission Line; 2.3 Magnetic Induction; 2.3.1 Linear Pulse Transformers; 2.3.2 Induction Cells; 2.3.3 Linear Transformer Drivers 2.3.3.1 Operating Principles2.3.3.2 Realized LTD Designs and Performance; 2.4 Design Examples; References; 3: Pulse Forming Lines; 3.1 Transmission Lines; 3.1.1 General Transmission Line Relations; 3.1.2 The Transmission Line Pulser; 3.2 Coaxial Pulse Forming Lines; 3.2.1 Basic Design Relations; 3.2.2 Optimum Impedance for Maximum Voltage; 3.2.3 Optimum Impedance for Maximum Energy Store; 3.3 Blumlein PFL; 3.3.1 Transient Voltages and Output Waveforms; 3.3.2 Coaxial Blumleins; 3.3.3 Stacked Blumlein; 3.4 Radial Lines; 3.5 Helical Lines; 3.6 PFL Performance Parameters |
Record Nr. | UNINA-9910271041003321 |
Lehr Janet | ||
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Foundations of pulsed power technology / / Janet Lehr and Pralhad Ron |
Autore | Lehr Janet |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2017] |
Descrizione fisica | 1 PDF (664 pages) |
Disciplina | 621.3815/34 |
Soggetto topico | Pulsed power systems |
ISBN |
1-119-30116-5
1-119-30117-3 1-118-88650-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Foundations of Pulsed Power Technology; Contents; Preface; About the Authors; Acknowledgments; Introduction; Sources of Information; References; 1: Marx Generators and Marx-Like Circuits; 1.1 Operational Principles of Simple Marxes; 1.1.1 Marx Charge Cycle; 1.1.2 Marx Erection; 1.1.2.1 Switch Preionization by Ultraviolet Radiation; 1.1.2.2 Switch Overvoltages in an Ideal Marx; 1.1.3 Marx Discharge Cycle; 1.1.3.1 No Fire; 1.1.3.2 Equivalent Circuit Parameters During Discharge; 1.1.4 Load Effects on the Marx Discharge; 1.1.4.1 Capacitive Loads; 1.1.4.2 A Marx Charging a Resistive Load
1.2 Impulse Generators1.2.1 Exact Solutions; 1.2.2 Approximate Solutions; 1.2.3 Distributed Front Resistors; 1.3 Effects of Stray Capacitance on Marx Operation; 1.3.1 Voltage Division by Stray Capacitance; 1.3.2 Exploiting Stray Capacitance: The Wave Erection Marx; 1.3.3 The Effects of Interstage Coupling Capacitance; 1.4 Enhanced Triggering Techniques; 1.4.1 Capacitive Back-Coupling; 1.4.2 Resistive Back-Coupling; 1.4.3 Capacitive and Resistively Coupled Marx; 1.4.4 The Maxwell Marx; 1.5 Examples of Complex Marx Generators; 1.5.1 Hermes I and II; 1.5.2 PBFA and Z; 1.5.3 Aurora [9] 1.6 Marx Generator Variations1.6.1 Marx/PFN with Resistive Load; 1.6.2 Helical Line Marx Generator; 1.7 Other Design Considerations; 1.7.1 Charging Voltage and Number of Stages; 1.7.2 Insulation System; 1.7.3 Marx Capacitors; 1.7.4 Marx Spark Gaps; 1.7.5 Marx Resistors; 1.7.6 Marx Initiation; 1.7.7 Repetitive Operation; 1.7.8 Circuit Modeling; 1.8 Marx-Like Voltage-Multiplying Circuits; 1.8.1 The Spiral Generator; 1.8.2 Time Isolation Line Voltage Multiplier; 1.8.3 The LC Inversion Generator; 1.9 Design Examples; References; 2: Pulse Transformers; 2.1 Tesla Transformers 2.1.1 Equivalent Circuit and Design Equations2.1.2 Double Resonance and Waveforms; 2.1.3 Off Resonance and Waveforms; 2.1.4 Triple Resonance and Waveforms; 2.1.5 No Load and Waveforms; 2.1.6 Construction and Configurations; 2.2 Transmission Line Transformers; 2.2.1 Tapered Transmission Line; 2.2.1.1 Pulse Distortion; 2.2.1.2 The Theory of Small Reflections; 2.2.1.3 Gain of a Tapered Transmission Line Transformer; 2.2.1.4 The Exponential Tapered Transmission Line; 2.3 Magnetic Induction; 2.3.1 Linear Pulse Transformers; 2.3.2 Induction Cells; 2.3.3 Linear Transformer Drivers 2.3.3.1 Operating Principles2.3.3.2 Realized LTD Designs and Performance; 2.4 Design Examples; References; 3: Pulse Forming Lines; 3.1 Transmission Lines; 3.1.1 General Transmission Line Relations; 3.1.2 The Transmission Line Pulser; 3.2 Coaxial Pulse Forming Lines; 3.2.1 Basic Design Relations; 3.2.2 Optimum Impedance for Maximum Voltage; 3.2.3 Optimum Impedance for Maximum Energy Store; 3.3 Blumlein PFL; 3.3.1 Transient Voltages and Output Waveforms; 3.3.2 Coaxial Blumleins; 3.3.3 Stacked Blumlein; 3.4 Radial Lines; 3.5 Helical Lines; 3.6 PFL Performance Parameters |
Record Nr. | UNINA-9910830238403321 |
Lehr Janet | ||
Hoboken, New Jersey : , : Wiley : , : IEEE Press, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|