top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Genomics Approach to Bioremediation : Principles, Tools, and Emerging Technologies
Genomics Approach to Bioremediation : Principles, Tools, and Emerging Technologies
Autore Bilal Muhammad
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (563 pages)
Altri autori (Persone) Romanholo FerreiraLuiz Fernando
IqbalHafiz M. N
KumarVineet
ISBN 9781119852117
9781119852100
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Part 1 Fundamentals of Metagenomics and Bioremediation -- Chapter 1 Application of Bioremediation for Environmental Clean-Up: Issues, Recent Developments, and the Way Forward -- 1.1 Introduction -- 1.2 Bioremediation: A Sustainable Approach -- 1.2.1 In-Situ Bioremediation -- 1.2.2 Ex-Situ Bioremediation -- 1.3 Importance of Vegetation for Bioremediation -- 1.4 Application of Bioremediation to Clean Up Environmental Pollutants -- 1.4.1 Heavy Metals -- 1.4.2 Agrochemicals -- 1.5 Advantages and Disadvantages of Bioremediation Technology -- 1.6 Recent Advancements in Bioremediation Technology -- 1.7 Conclusion -- References -- Chapter 2 Omics in Biomethanation and Environmental Remediation -- 2.1 Introduction -- 2.2 Feedstocks Used -- 2.2.1 Biogas from the Sludge and Manure -- 2.2.2 Biogas from Solid Waste (MSW) -- 2.2.3 Food and Drink Waste used for Digestion -- 2.2.4 Feedstock from Agricultural Wastes -- 2.2.5 Biogas Yields and Feedstock Productivity -- 2.3 Microbiology and Biochemical Reactions in Anaerobic Digestions -- 2.3.1 Biochemistry in Anaerobic Digestion of Feedstock -- 2.4 Omics in Biomethanation and BiorRemediation -- 2.4.1 Bacterial and Archaeal Community Sequencing -- 2.4.2 PHA Screening for Production -- 2.4.3 Microbial Degradation of PHA -- 2.4.4 Proteomics Study on Kraft Lignin -- 2.4.5 Lignin/Aromatic Compound Degradation Proteins Expressed on Kraft Lignin -- 2.4.6 Other Significant Proteins Expressed on KL -- 2.4.7 Pathways for the Utilization of Lignin and PHA Metabolism -- 2.5 Role of Factors in Anaerobic Digestions in Biomethanation -- 2.5.1 Temperature -- 2.5.2 Redox Potential -- 2.5.3 C:N Ratio and Ammonium Inhibition -- 2.5.4 pH -- 2.6 Inhibitory Substances for Anaerobic Digestion.
2.7 Degradation and Bioremediation of Toxic Compounds for Enhanced Production of Biomethanation -- 2.7.1 Degradation of Lignin in the Process of Digestion -- 2.7.2 Degradation of Others -- 2.8 Circular Economy Perspective in Biogas Production -- 2.9 Conclusion -- References -- Chapter 3 Enzyme Immobilization: An Effective Platform to Improve the Reusability and Catalytic Efficiency of Enzymes -- 3.1 Introduction -- 3.2 Immobilization of Enzymes -- 3.3 Aspects Affecting the Performance of Immobilized Enzyme -- 3.3.1 Support Material -- 3.3.2 Organic Materials -- 3.3.3 Inorganic Materials -- 3.3.4 Immobilization Methods -- 3.3.5 Operation Conditions -- 3.4 Factors Contributing Toward the Immobilized Enzyme Activity Enhancement -- 3.4.1 Enzyme Inhibition Control -- 3.4.2 Enzyme Structure Rigidification -- 3.4.3 Medium and Substrate/Product Partition Effect -- 3.4.4 Soluble Enzyme Aggregation -- 3.4.5 Diffusional Limitations -- 3.4.6 More Active Conformation Retention -- 3.4.7 Co-immobilization -- 3.5 Immobilized Enzyme Applications -- 3.6 Conclusion -- References -- Chapter 4 Biostimulation and Bioaugmentation: Case Studies -- 4.1 Introduction -- 4.2 Biostimulation -- 4.3 Bioagumentation -- 4.3.1 Cell (Microorganism) Bioaugmentation (c-BA) -- 4.3.2 Factors Impacting Bioaugmentation -- 4.3.3 Gene Bioaugmentation (g-BA) -- 4.4 Commercially Available Bioremediation Agents -- 4.5 Conclusions -- References -- Chapter 5 Plant Microbe Synergism for Arsenic Stress Amelioration in Crop Plants -- 5.1 Introduction -- 5.2 Distribution of Arsenic in Soil and Water -- 5.2.1 Arsenic in Water -- 5.2.2 Arsenic in Soil -- 5.3 Methods of Arsenic Remediation -- 5.3.1 Physical Remediation -- 5.3.2 Chemical Remediation -- 5.4 Arsenic-Induced Toxicity in Crop Plants -- 5.5 Arsenic Remediation Through Mineral Fertilization -- 5.5.1 Application of Iron (Fe).
5.5.2 Application of Phosphorus -- 5.5.3 Application of Silicon -- 5.5.4 Application of Sulfur -- 5.5.5 Application of Zinc -- 5.6 Bioremediation -- 5.6.1 Phytoremediation of Heavy Metals -- 5.6.2 Micro-Remediation of As -- 5.6.3 Mechanism of As Micro-Remediation -- 5.7 Plant-Microbe Interaction and Their Role in Reducing As Toxicity in Crop Plants -- 5.7.1 Phosphate Solubilization -- 5.7.2 Silicon (Si) Solubilization -- 5.7.3 Auxin Production -- 5.7.4 Siderophore Production -- 5.7.5 Aminoacyclopropane-1-Carboxylate (ACC) Deaminase Production -- 5.7.6 Exopolysaccharide (EPS) Production -- 5.8 Plant-Microbe Interaction as a Boon for Arsenic Remediation -- 5.9 Microbial Methylation of Arsenic in Soil and its Reduced Uptake in Plants -- 5.10 Conclusion -- References -- Chapter 6 Metagenomic Characterization and Applications of Microbial Surfactants in Remediation of Potentially Toxic Heavy Metals for Environmental Safety: Recent Advances and Challenges -- 6.1 Introduction -- 6.2 Biosurfactants' Characteristics -- 6.2.1 Surface and Interface Activity -- 6.2.2 Temperature and pH Tolerance -- 6.2.3 Biodegradability -- 6.2.4 Low Toxicity -- 6.2.5 Antiadhesive Agent -- 6.2.6 Emulsion Formation Breaking -- 6.3 Classification of Biosurfactants -- 6.3.1 Classification Based on Molecular Weight -- 6.3.2 Classification Based on Chemical Structure -- 6.4 Screening of Microorganisms for Biosurfactants Production -- 6.4.1 Hemolytic Activity -- 6.4.2 Drop Collapsing Test -- 6.4.3 Oil Spreading Test -- 6.4.4 Emulsification Index Test -- 6.4.5 Blue Agar Plate or CTAB Agar Plate Method -- 6.4.6 Hydrocarbon Overlay Agar Method -- 6.4.7 Axisymmetric Drop Shape Analysis (ADSA) -- 6.4.8 Cell Surface Hydrophobicity Technique -- 6.4.9 Tensiometeric Measurement of SFT -- 6.4.10 Tilted Glass Slide Test -- 6.4.11 Direct Colony-Thin Layer Chromatographic (TLC) Technique.
6.5 Metagenomic Characterization of Biosurfactant-Producing Microorganisms -- 6.6 Biosynthesis of Biosurfactants -- 6.6.1 Glycolipid Biosurfactants -- 6.6.2 Lipopeptide Biosurfactants -- 6.6.3 HMW Biosurfactants/Bioemulsifiers (BS/BE) -- 6.7 Characterization of Biosurfactants -- 6.7.1 Thin-Layer Chromatography (TLC) -- 6.7.2 High-Pressure Liquid Chromatography (HPLC) -- 6.7.3 Gas Chromatography (GC) and Mass Spectroscopy (MS) -- 6.7.4 Infrared (IR) Spectroscopy -- 6.7.5 Nuclear Magnetic Resonance (NMR) -- 6.7.6 Fast Atom Bombardment-Mass Spectroscopy (FAB-MS) -- 6.8 Factors Influencing Biosurfactants Production -- 6.8.1 Carbon Sources -- 6.8.2 Nitrogen Source -- 6.8.3 Natural Elements -- 6.8.4 Salt Concentration -- 6.8.5 Aeration and Agitation -- 6.9 Applications of Biosurfactants in Heavy Metals Environmental Remediation -- 6.10 Challenges in Cost-Effective Production of Biosurfactants -- 6.11 Future Research Needs -- 6.12 Conclusions -- References -- Part 2 Metagenomics in Environmental Cleanup -- Chapter 7 Metagenomic Approaches Applied to Bioremediation of Xenobiotics -- 7.1 Introduction -- 7.2 Metagenomic Approaches in Bioremediation Processes -- 7.3 Metagenomics in the Hydrocarbon Degradation -- 7.4 Metagenomic Approaches in the Drugs Degradation -- 7.5 Metagenomic Approaches in the Dye Degradation -- 7.6 Metagenomic Approaches in the Pesticides Degradation -- 7.7 Metagenomics in Heavy Metal Biorremediation -- References -- Chapter 8 Omics Approaches for Microalgal Applications in Wastewater Treatment -- 8.1 Introduction -- 8.2 Concept on Microalgal Biofilms -- 8.2.1 Cultivation -- 8.2.2 Composition -- 8.2.3 Applications -- 8.3 Factors Influencing Nutrient Extraction and Microalgal Growth -- 8.4 Mechanism of Microalgal Remediation -- 8.4.1 Nutrient Uptake -- 8.4.2 Heavy Metal Extraction/Uptake -- 8.4.3 Removal of Coliform Bacteria.
8.4.4 Removal of Organic Pollutants -- 8.5 Multi-Omics Approach -- 8.5.1 Genomics -- 8.5.2 Metagenomics -- 8.5.3 Transcriptomics -- 8.5.4 Meta-transcriptomics -- 8.5.5 Proteomics -- 8.5.6 Meta-proteomics -- 8.5.7 Metabolomics -- 8.6 Conclusion -- References -- Chapter 9 Microbial Community Profiling in Wastewater of Effluent Treatment Plant -- 9.1 Source of Wastewater -- 9.2 Wastewater Treatment Plant -- 9.3 Wastewater Treatment Facilities Have a Wide Range of Microbial Diversity -- 9.4 Microbial Composition in WWTPs -- 9.4.1 Varieties of Bacterial Communities -- 9.5 Screening, Selection, and Identification of Microbial Communities -- 9.5.1 Chemotaxonomy-Based Direct Monitoring Methods -- 9.5.2 Monitoring Approaches Based on rRNA -- 9.5.3 Hybridization Methods -- 9.5.4 16S rRNA Sequencing in Wastewater Treatment and Water Quality Monitoring -- 9.5.5 Metagenomic Analysis -- 9.5.6 Next Generation Sequencing (NGS) Technology -- 9.5.7 Microbial Community Analysis by Metatranscriptomics and Metaproteomics -- 9.5.8 Metabolomic Analysis of Microbial Community -- 9.5.9 Approach Based on Marker-Gene -- 9.5.10 Pyrosequencing Technology -- 9.6 Health Problem for Wastewater Treatment Employees -- 9.6.1 Hydrogen Sulfide's Negative Consequences -- 9.6.2 Musculoskeletal Disorders -- 9.6.3 Leptospirosis -- 9.6.4 Hepatitis -- 9.6.5 Helicobacter pylori -- 9.7 Conclusion -- 9.8 Future Prospective -- References -- Chapter 10 Mining of Novel Microbial Enzymes Using Metagenomics Approach for Efficient Bioremediation: An Overview -- 10.1 Introduction -- 10.2 Omics for Microbial Enzymes in Bioremediation -- 10.2.1 Omics for Sequencing Microbial Diversity: The Early Era (Figure 10.1) -- 10.2.2 High Throughput Sequencing and Advances in Omics -- 10.3 Implementing Metagenomics for Énvironmental Remediations -- 10.3.1 Sequence-Based Metagenomics in Bioremediation.
10.3.2 Activity-Based Metagenomics for Remediation (Figure 10.2).
Record Nr. UNINA-9910646198403321
Bilal Muhammad  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microbes Based Approaches for the Management of Hazardous Contaminants
Microbes Based Approaches for the Management of Hazardous Contaminants
Autore Kumar Ajay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (461 pages)
Altri autori (Persone) ShuklaLivleen
SinghJoginder
Romanholo FerreiraLuiz Fernando
Soggetto topico Microbial ecology
Soil remediation
ISBN 9781119851158
1119851157
9781119851141
1119851149
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Mycobial Nanotechnology in Bioremediation of Wastewater -- 1.1 Fungi -- 1.2 Nanotechnology Aspects -- 1.3 The Production of Nanoparticles Using an Origin of Fungi -- 1.3.1 Silver Nanoparticles -- 1.3.2 Gold Nanoparticles -- 1.3.3 Additional Nanoparticles -- 1.4 Categories and Characteristics of Synthesized Nanoparticles -- 1.4.1 Characteristics on Nanoparticles -- 1.4.2 Physical Characteristics -- 1.4.3 Biological Characteristics -- 1.4.4 Medical Benefits -- 1.4.5 Mechanical Characteristics -- 1.4.6 Optical Characteristics -- 1.4.7 Electrical Characteristics -- 1.5 Various Usage of Nanomaterials -- 1.6 Mycobial Bioremediation of Heavy Metals from Wastewater -- 1.7 Benefits of Mycobial Bioremediation -- 1.8 Constraints of Mycobial Bioremediation -- 1.9 Conclusion and Future Prospects -- References -- Chapter 2 Microbial Enzymes in Biodegradation of Organic Pollutants: Mechanisms and Applications -- 2.1 Introduction -- 2.1.1 Mechanism of Microbial Enzymes in Bioremediation of Organic Pollutants -- 2.1.1.1 Fungi -- 2.1.1.2 Bacteria -- 2.1.1.3 Algae -- 2.1.1.4 Other Microbes -- 2.1.2 Applications of Microbial Enzymes Mediated Bioremediation -- 2.1.3 Factors Affecting Enzymatic Biodegradation -- 2.2 Conclusion -- References -- Chapter 3 Microbe Assisted Remediation of Xenobiotics: A Sustainable Solution -- 3.1 Introduction -- 3.1.1 Sources of Xenobiotics -- 3.1.2 The Effects of Xenobiotics on Environment -- 3.1.2.1 Effect of Xenobiotics on Soil -- 3.1.2.2 Effect of Xenobiotics on Water -- 3.1.2.3 Effect of Xenobiotics on Plants -- 3.1.2.4 Effect of Xenobiotics on Marine Life -- 3.1.2.5 Effect of Xenobiotics on Terrestrial Animals -- 3.1.2.6 Effect of Xenobiotics on Human Health -- 3.2 Bioremediation -- 3.2.1 Factors Affecting Bioremediation.
3.3 Environmental Factors -- 3.3.1 Strategies for Bioremediation -- 3.3.1.1 In Situ Bioremediation Strategies -- 3.3.2 Bioventing -- 3.3.3 Biosparging -- 3.3.4 Bioaugmentation -- 3.3.5 Biostimulation -- 3.4 Ex Situ Bioremediation Strategies -- 3.4.1 Landfarming -- 3.4.2 Composting -- 3.4.3 Biopiling -- 3.5 Genetic Engineering Approaches -- 3.6 The Beneficial Role of Microbes in Degradation of Different Pollutants -- 3.6.1 In Heavy Metal Bioremediation -- 3.7 Mechanism of Heavy Metal Detoxification by Microbes -- 3.7.1 Biosorption Mechanisms -- 3.8 Intracellular Sequestration -- 3.9 Extracellular Sequestration -- 3.9.1 Metal Methylation -- 3.10 Reduction of Heavy Metal Ions by Microbial Cell -- 3.10.1 In Dye Bioremediation -- 3.11 The Degradation Mechanism of the Complex Dye Structure by Microbes -- 3.11.1 In Pesticide Bioremediation -- 3.11.2 In Petroleum Hydrocarbons and Chlorinated Compound Bioremediation -- 3.12 In Domestic and Agricultural Lignocellulose Wastes Remediation -- 3.13 Conclusion -- References -- Chapter 4 Bioremediation Strategies as Sustainable Bio-Tools for Mitigationof Emerging Pollutants -- 4.1 Introduction -- 4.2 Bioremediation by Microbial Strains -- 4.2.1 Aerobic -- 4.2.2 Anaerobic -- 4.3 Factors Affecting Microbial Bioremediation -- 4.3.1 Principle of Bioremediation -- 4.4 Classification of Bioremediations -- 4.4.1 Land Farming -- 4.4.2 Biopile -- 4.4.3 Bioreactor -- 4.4.3.1 In Situ Bioremediation Techniques -- 4.4.3.2 Intrinsic In Situ Bioremediation -- 4.4.3.3 Engineered In Situ Bioremediation -- 4.4.4 Windrows -- 4.4.5 Bioslurping -- 4.4.6 Bioventing -- 4.4.7 Phytoremediation -- 4.4.8 Biosparging -- 4.5 Bioremediation of Various Pollutants -- 4.5.1 Bioremediation for Inorganic Pollutants -- 4.5.2 Bioremediation for Organic Pollutants -- 4.6 Recent Advancement and Challenges in Bioremediation.
4.6.1 Bioinformatics Approaches in Bioremediation -- 4.6.2 Bioremediation Tools Based on Omics -- 4.6.2.1 Transcriptomics and Metatranscriptomics -- 4.6.2.2 Genomics -- 4.6.2.3 Proteomics and Metabolomics -- 4.6.3 Bioremediation Using Nanotechnological Methods -- 4.6.3.1 Designing the Synthetic Microbial Communities -- 4.6.3.2 Engineered Polymeric Nanoparticles for Hydrophobic Contaminant Bioremediation -- 4.6.3.3 Nanotechnology and Microbes -- 4.6.3.4 Genetic and Metabolic Engineering -- 4.7 Advantages and Disadvantages -- 4.8 Conclusion -- 4.9 Future Perspective -- References -- Chapter 5 How Can Plant-microbe Interactions be used for the Bioremediation of Metals in Water Bodies? -- 5.1 Water Contamination Issues -- 5.2 Metal Contamination Effects -- 5.3 Metal Bioremediation -- 5.4 Aquatic Macrophytes in Metal Phytoremediation Processes -- 5.5 Microorganisms in Metal Remediation -- 5.5.1 Microorganism Metal Resistance Mechanisms -- 5.6 Interaction Between Aquatic Macrophytes and Microorganisms -- 5.7 Conclusion -- References -- Chapter 6 Extremophilic Microorganisms for Environmental Bioremediation -- 6.1 Introduction -- 6.2 Extremophiles -- 6.3 Extremophilic Microorganisms Under Extreme Conditions -- 6.3.1 Acidophilic Microorganisms -- 6.3.2 Alkaliphilic Microorganisms -- 6.3.3 Halophilic -- 6.3.4 Thermophiles -- 6.3.5 Piezophile Microorganism -- 6.3.6 Psychrophilic Microorganisms -- 6.3.7 Radiophiles -- 6.4 Extremophiles Applications for Environmental Bioremediation -- 6.4.1 Treatment of Radioactive Waste -- 6.5 Bioremediation of Petroleum Product -- 6.5.1 Petroleum Hydrocarbon Microbial Degradation in Hypersaline Environments -- 6.5.2 Low-Temperature Environments, Microbial Degradation of Petroleum Hydrocarbons Occurrence -- 6.5.3 In High-Temperature Environments, Microbial Degradation of Petroleum Hydrocarbons.
6.5.4 Removal of Heavy Metal Pollutants -- 6.5.5 Degradation of Organic Pollutants -- 6.5.6 Wastewater Treatment -- 6.5.7 Textile Dye Degradation -- 6.5.8 Bioremediation of Pesticides -- 6.6 Conclusion and Future Perspective -- References -- Chapter 7 Bacterial/Fungal Inoculants: Application as Bio Stimulants -- 7.1 Introduction -- 7.1.1 Biological Nitrogen Fixation (BNF) -- 7.1.2 Production of an Iron Chelating Compound -- 7.1.3 Phytohormone Production -- 7.1.4 Solubilization of Phosphate (P) -- 7.2 Arbuscular Mycorrhizal Fungi (AMF) -- 7.2.1 Microbial Inoculants as Pathogens or Parasites -- 7.2.2 Other than Bacterial/Fungal Inoculants Algal Extracts also Play Important Role -- 7.2.3 Disruption of Ecosystem Services -- 7.2.4 World Market for PGPR-Based Biostimulants -- 7.3 Conclusion -- References -- Chapter 8 Microbial Inoculants and Their Potential Application in Bioremediation: Emphasis on Agrochemicals -- 8.1 Introduction -- 8.2 Pollution of Different Matrices by Agrochemicals -- 8.2.1 Soil -- 8.2.2 Water -- 8.2.3 Air -- 8.3 Different Strategies Employed in Bioremediation -- 8.3.1 In Situ Biodegradation Strategies -- 8.3.2 Ex Situ Biodegradation Strategies -- 8.4 Microbe-Mediated Bioremediation and Recent Advances -- 8.4.1 Bacterial Bioremediation -- 8.4.2 Fungal Bioremediation -- 8.4.3 Microalgae and Diatom-Based Bioremediation -- 8.5 Novel Enzymes or Genes Involved in Bioremediation of Pollutants -- 8.6 Conclusion -- References -- Chapter 9 Porous Nanomaterials for Enzyme Immobilization and Bioremediation Applications -- 9.1 Introduction -- 9.2 Enzyme Immobilization -- 9.3 Model Enzymes With Multifunctional Attributes -- 9.3.1 Laccases -- 9.3.3 Peroxidases, i.e., Lignin and Manganese -- 9.3.4 Horseradish Peroxidases -- 9.4 Supports for Enzyme Immobilization -- 9.5 Inorganic Materials as Support Matrices.
9.6 Organic Materials as Support Matrices -- 9.7 Synthetic Polymers as Support Matrices -- 9.8 Nanomaterials as Supports for Enzyme Immobilization -- 9.9 Porous Nanomaterials as Supports for Enzyme Immobilization -- 9.10 Advantages of Enzyme Immobilization -- 9.10.1 Stabilization -- 9.10.2 Recovery and Reusability -- 9.10.3 Flexibility -- 9.11 Metal-Organic Frameworks as Supports for Enzyme Immobilization -- 9.12 Bioremediation Applications of Enzyme Immobilized Porous Nanomaterials -- 9.13 Future Directions -- 9.14 Conclusion -- References -- Chapter 10 Effects of Microbial Inoculants on Soil Nutrients and Microorganisms -- 10.1 Introduction -- 10.2 Microbial Inoculants and Soil Nutrients -- 10.3 Influence of Microbial Inoculants on Soil Nutrient Quality -- 10.3.1 Nitrogen -- 10.3.1.1 Symbiotic Nitrogen Fixation -- 10.3.1.2 Nonsymbiotic Nitrogen Fixation -- 10.3.2 Phosphorous -- 10.3.3 Potassium -- 10.3.4 Zinc -- 10.4 Impact of Microbial Inoculants on Natural Soil Microbial Communities -- 10.5 Microbial Inoculants: Mechanisms Involved in Affecting the Resident Microbial Community -- 10.5.1 Competition -- 10.5.2 Antagonism -- 10.5.3 Synergism -- 10.5.4 Indirect Effect Through Root Exudation -- 10.6 Effect of Monoinoculation Versus Coinoculation -- 10.7 Conclusion -- References -- Chapter 11 Bacterial Treatment of Industrial Wastewaters: Applications and Challenges -- 11.1 Introduction -- 11.2 Composition and Nature of Various Industrial Wastewater -- 11.2.1 Types and Sources of Wastewater on the Basis of Wastewater Production -- 11.2.2 Characteristics of Industrial Wastewater -- 11.2.2.1 Physical Characteristics of Wastewater -- 11.2.2.2 Chemical Characteristics of Wastewater -- 11.2.3 Biological Characteristics of Wastewater -- 11.3 Role of Bacteria in Biodegradation of Specific Pollutant Found in Wastewater.
11.4 Different Approaches and Mechanism of Bacterial Bioremediation in Industrial Wastewater.
Record Nr. UNINA-9911019735703321
Kumar Ajay  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui