top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Autore Rokach Lior
Pubbl/distr/stampa Singapore, : World Scientific, c2008
Descrizione fisica 1 online resource (263 p.)
Disciplina 006.312
Altri autori (Persone) MaimonOded Z
Collana Series in machine perception and artificial intelligence
Soggetto topico Data mining
Decision trees
Soggetto genere / forma Electronic books.
ISBN 1-281-91179-8
9786611911799
981-277-172-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match
2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate
3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria
4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning
5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets
6.1.10 Online Adaptive Decision Trees
Record Nr. UNINA-9910450810803321
Rokach Lior  
Singapore, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Autore Rokach Lior
Pubbl/distr/stampa Singapore, : World Scientific, c2008
Descrizione fisica 1 online resource (263 p.)
Disciplina 006.312
Altri autori (Persone) MaimonOded Z
Collana Series in machine perception and artificial intelligence
Soggetto topico Data mining
Decision trees
ISBN 1-281-91179-8
9786611911799
981-277-172-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match
2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate
3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria
4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning
5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets
6.1.10 Online Adaptive Decision Trees
Record Nr. UNINA-9910784996003321
Rokach Lior  
Singapore, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining with decision trees : theroy and applications / / Lior Rokach, Oded Maimon
Data mining with decision trees : theroy and applications / / Lior Rokach, Oded Maimon
Autore Rokach Lior
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : World Scientific, c2008
Descrizione fisica 1 online resource (263 p.)
Disciplina 006.312
Altri autori (Persone) MaimonOded Z
Collana Series in machine perception and artificial intelligence
Soggetto topico Data mining
Decision trees
ISBN 1-281-91179-8
9786611911799
981-277-172-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match
2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate
3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria
4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning
5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets
6.1.10 Online Adaptive Decision Trees
Record Nr. UNINA-9910824725103321
Rokach Lior  
Singapore, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Data Science Handbook : Data Mining and Knowledge Discovery Handbook / / edited by Lior Rokach, Oded Maimon, Erez Shmueli
Machine Learning for Data Science Handbook : Data Mining and Knowledge Discovery Handbook / / edited by Lior Rokach, Oded Maimon, Erez Shmueli
Autore Rokach Lior
Edizione [3rd ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (975 pages)
Disciplina 006.312
Altri autori (Persone) MaimonOded
ShmueliErez
Soggetto topico Machine learning
Artificial intelligence
Data mining
Information storage and retrieval systems
Machine Learning
Artificial Intelligence
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Mineria de dades
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
ISBN 3-031-24628-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Knowledge Discovery and Data Mining -- Preprocessing Methods -- Data Cleansing: A Prelude to Knowledge Discovery -- Handling Missing Attribute Values -- Geometric Methods for Feature Extraction and Dimensional Reduction - A Guided Tour -- Dimension Reduction and Feature Selection -- Discretization Methods -- Outlier Detection -- Supervised Methods -- Supervised Learning -- Classification Trees -- Bayesian Networks -- Data Mining within a Regression Framework -- Support Vector Machines -- Rule Induction -- Unsupervised Methods -- A survey of Clustering Algorithms -- Association Rules -- Frequent Set Mining -- Constraint-based Data Mining -- Link Analysis -- Soft Computing Methods -- A Review of Evolutionary Algorithms for Data Mining -- A Review of Reinforcement Learning Methods -- Neural Networks For Data Mining -- Granular Computing and Rough Sets - An Incremental Development -- Pattern Clustering Using a Swarm Intelligence Approach -- Using Fuzzy Logic in Data Mining -- Supporting Methods -- Statistical Methods for Data Mining -- Logics for Data Mining -- Wavelet Methods in Data Mining -- Fractal Mining - Self Similarity-based Clustering and its Applications -- Visual Analysis of Sequences Using Fractal Geometry -- Interestingness Measures - On Determining What Is Interesting -- Quality Assessment Approaches in Data Mining -- Data Mining Model Comparison -- Data Mining Query Languages -- Advanced Methods -- Mining Multi-label Data -- Privacy in Data Mining -- Meta-Learning - Concepts and Techniques -- Bias vs Variance Decomposition for Regression and Classification -- Mining with Rare Cases -- Data Stream Mining -- Mining Concept-Drifting Data Streams -- Mining High-Dimensional Data -- Text Mining and Information Extraction -- Spatial Data Mining -- Spatio-temporal clustering -- Data Mining for Imbalanced Datasets: An Overview -- Relational Data Mining -- Web Mining -- A Review of Web Document Clustering Approaches -- Causal Discovery -- Ensemble Methods in Supervised Learning -- Data Mining using Decomposition Methods -- Information Fusion - Methods and Aggregation Operators -- Parallel and Grid-Based Data Mining – Algorithms, Models and Systems for High-Performance KDD -- Collaborative Data Mining -- Organizational Data Mining -- Mining Time Series Data -- Applications -- Multimedia Data Mining -- Data Mining in Medicine -- Learning Information Patterns in Biological Databases - Stochastic Data Mining -- Data Mining for Financial Applications -- Data Mining for Intrusion Detection -- Data Mining for CRM -- Data Mining for Target Marketing -- NHECD - Nano Health and Environmental Commented Database -- Software -- Commercial Data Mining Software -- Weka-A Machine Learning Workbench for Data Mining.
Record Nr. UNINA-9910739470003321
Rokach Lior  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pattern classification using ensemble methods [[electronic resource] /] / Lior Rokach
Pattern classification using ensemble methods [[electronic resource] /] / Lior Rokach
Autore Rokach Lior
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (242 p.)
Disciplina 621.389/28
Collana Series in machine perception and artificial intelligence
Soggetto topico Pattern recognition systems
Algorithms
Machine learning
Soggetto genere / forma Electronic books.
ISBN 1-282-75785-7
9786612757853
981-4271-07-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Introduction to Pattern Classification; 1.1 Pattern Classification; 1.2 Induction Algorithms; 1.3 Rule Induction; 1.4 Decision Trees; 1.5 Bayesian Methods; 1.5.1 Overview.; 1.5.2 Naıve Bayes; 1.5.2.1 The Basic Naıve Bayes Classifier; 1.5.2.2 Naıve Bayes Induction for Numeric Attributes; 1.5.2.3 Correction to the Probability Estimation; 1.5.2.4 Laplace Correction; 1.5.2.5 No Match; 1.5.3 Other Bayesian Methods; 1.6 Other Induction Methods; 1.6.1 Neural Networks; 1.6.2 Genetic Algorithms; 1.6.3 Instance-based Learning; 1.6.4 Support Vector Machines
2. Introduction to Ensemble Learning 2.1 Back to the Roots; 2.2 The Wisdom of Crowds; 2.3 The Bagging Algorithm; 2.4 The Boosting Algorithm; 2.5 The Ada Boost Algorithm; 2.6 No Free Lunch Theorem and Ensemble Learning; 2.7 Bias-Variance Decomposition and Ensemble Learning; 2.8 Occam's Razor and Ensemble Learning; 2.9 Classifier Dependency; 2.9.1 Dependent Methods; 2.9.1.1 Model-guided Instance Selection; 2.9.1.2 Basic Boosting Algorithms; 2.9.1.3 Advanced Boosting Algorithms; 2.9.1.4 Incremental Batch Learning; 2.9.2 Independent Methods; 2.9.2.1 Bagging; 2.9.2.2 Wagging
2.9.2.3 Random Forest and Random Subspace Projection 2.9.2.4 Non-Linear Boosting Projection (NLBP); 2.9.2.5 Cross-validated Committees; 2.9.2.6 Robust Boosting; 2.10 Ensemble Methods for Advanced Classification Tasks; 2.10.1 Cost-Sensitive Classification; 2.10.2 Ensemble for Learning Concept Drift; 2.10.3 Reject Driven Classification; 3. Ensemble Classification; 3.1 Fusions Methods; 3.1.1 Weighting Methods; 3.1.2 Majority Voting; 3.1.3 Performance Weighting; 3.1.4 Distribution Summation; 3.1.5 Bayesian Combination; 3.1.6 Dempster-Shafer; 3.1.7 Vogging; 3.1.8 Naıve Bayes
3.1.9 Entropy Weighting 3.1.10 Density-based Weighting; 3.1.11 DEA Weighting Method; 3.1.12 Logarithmic Opinion Pool; 3.1.13 Order Statistics; 3.2 Selecting Classification; 3.2.1 Partitioning the Instance Space; 3.2.1.1 The K-Means Algorithm as a Decomposition Tool; 3.2.1.2 Determining the Number of Subsets; 3.2.1.3 The Basic K-Classifier Algorithm; 3.2.1.4 The Heterogeneity Detecting K-Classifier (HDK-Classifier); 3.2.1.5 Running-Time Complexity; 3.3 Mixture of Experts and Meta Learning; 3.3.1 Stacking; 3.3.2 Arbiter Trees; 3.3.3 Combiner Trees; 3.3.4 Grading; 3.3.5 Gating Network
4. Ensemble Diversity 4.1 Overview; 4.2 Manipulating the Inducer; 4.2.1 Manipulation of the Inducer's Parameters; 4.2.2 Starting Point in Hypothesis Space; 4.2.3 Hypothesis Space Traversal; 4.3 Manipulating the Training Samples; 4.3.1 Resampling; 4.3.2 Creation; 4.3.3 Partitioning; 4.4 Manipulating the Target Attribute Representation; 4.4.1 Label Switching; 4.5 Partitioning the Search Space; 4.5.1 Divide and Conquer; 4.5.2 Feature Subset-based Ensemble Methods; 4.5.2.1 Random-based Strategy; 4.5.2.2 Reduct-based Strategy; 4.5.2.3 Collective-Performance-based Strategy
4.5.2.4 Feature Set Partitioning
Record Nr. UNINA-9910455562503321
Rokach Lior  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pattern classification using ensemble methods [[electronic resource] /] / Lior Rokach
Pattern classification using ensemble methods [[electronic resource] /] / Lior Rokach
Autore Rokach Lior
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (242 p.)
Disciplina 621.389/28
Collana Series in machine perception and artificial intelligence
Soggetto topico Pattern recognition systems
Algorithms
Machine learning
ISBN 1-282-75785-7
9786612757853
981-4271-07-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Introduction to Pattern Classification; 1.1 Pattern Classification; 1.2 Induction Algorithms; 1.3 Rule Induction; 1.4 Decision Trees; 1.5 Bayesian Methods; 1.5.1 Overview.; 1.5.2 Naıve Bayes; 1.5.2.1 The Basic Naıve Bayes Classifier; 1.5.2.2 Naıve Bayes Induction for Numeric Attributes; 1.5.2.3 Correction to the Probability Estimation; 1.5.2.4 Laplace Correction; 1.5.2.5 No Match; 1.5.3 Other Bayesian Methods; 1.6 Other Induction Methods; 1.6.1 Neural Networks; 1.6.2 Genetic Algorithms; 1.6.3 Instance-based Learning; 1.6.4 Support Vector Machines
2. Introduction to Ensemble Learning 2.1 Back to the Roots; 2.2 The Wisdom of Crowds; 2.3 The Bagging Algorithm; 2.4 The Boosting Algorithm; 2.5 The Ada Boost Algorithm; 2.6 No Free Lunch Theorem and Ensemble Learning; 2.7 Bias-Variance Decomposition and Ensemble Learning; 2.8 Occam's Razor and Ensemble Learning; 2.9 Classifier Dependency; 2.9.1 Dependent Methods; 2.9.1.1 Model-guided Instance Selection; 2.9.1.2 Basic Boosting Algorithms; 2.9.1.3 Advanced Boosting Algorithms; 2.9.1.4 Incremental Batch Learning; 2.9.2 Independent Methods; 2.9.2.1 Bagging; 2.9.2.2 Wagging
2.9.2.3 Random Forest and Random Subspace Projection 2.9.2.4 Non-Linear Boosting Projection (NLBP); 2.9.2.5 Cross-validated Committees; 2.9.2.6 Robust Boosting; 2.10 Ensemble Methods for Advanced Classification Tasks; 2.10.1 Cost-Sensitive Classification; 2.10.2 Ensemble for Learning Concept Drift; 2.10.3 Reject Driven Classification; 3. Ensemble Classification; 3.1 Fusions Methods; 3.1.1 Weighting Methods; 3.1.2 Majority Voting; 3.1.3 Performance Weighting; 3.1.4 Distribution Summation; 3.1.5 Bayesian Combination; 3.1.6 Dempster-Shafer; 3.1.7 Vogging; 3.1.8 Naıve Bayes
3.1.9 Entropy Weighting 3.1.10 Density-based Weighting; 3.1.11 DEA Weighting Method; 3.1.12 Logarithmic Opinion Pool; 3.1.13 Order Statistics; 3.2 Selecting Classification; 3.2.1 Partitioning the Instance Space; 3.2.1.1 The K-Means Algorithm as a Decomposition Tool; 3.2.1.2 Determining the Number of Subsets; 3.2.1.3 The Basic K-Classifier Algorithm; 3.2.1.4 The Heterogeneity Detecting K-Classifier (HDK-Classifier); 3.2.1.5 Running-Time Complexity; 3.3 Mixture of Experts and Meta Learning; 3.3.1 Stacking; 3.3.2 Arbiter Trees; 3.3.3 Combiner Trees; 3.3.4 Grading; 3.3.5 Gating Network
4. Ensemble Diversity 4.1 Overview; 4.2 Manipulating the Inducer; 4.2.1 Manipulation of the Inducer's Parameters; 4.2.2 Starting Point in Hypothesis Space; 4.2.3 Hypothesis Space Traversal; 4.3 Manipulating the Training Samples; 4.3.1 Resampling; 4.3.2 Creation; 4.3.3 Partitioning; 4.4 Manipulating the Target Attribute Representation; 4.4.1 Label Switching; 4.5 Partitioning the Search Space; 4.5.1 Divide and Conquer; 4.5.2 Feature Subset-based Ensemble Methods; 4.5.2.1 Random-based Strategy; 4.5.2.2 Reduct-based Strategy; 4.5.2.3 Collective-Performance-based Strategy
4.5.2.4 Feature Set Partitioning
Record Nr. UNINA-9910780894103321
Rokach Lior  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pattern classification using ensemble methods / / Lior Rokach
Pattern classification using ensemble methods / / Lior Rokach
Autore Rokach Lior
Edizione [1st ed.]
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (242 p.)
Disciplina 621.389/28
Collana Series in machine perception and artificial intelligence
Soggetto topico Pattern recognition systems
Algorithms
Machine learning
ISBN 1-282-75785-7
9786612757853
981-4271-07-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Introduction to Pattern Classification; 1.1 Pattern Classification; 1.2 Induction Algorithms; 1.3 Rule Induction; 1.4 Decision Trees; 1.5 Bayesian Methods; 1.5.1 Overview.; 1.5.2 Naıve Bayes; 1.5.2.1 The Basic Naıve Bayes Classifier; 1.5.2.2 Naıve Bayes Induction for Numeric Attributes; 1.5.2.3 Correction to the Probability Estimation; 1.5.2.4 Laplace Correction; 1.5.2.5 No Match; 1.5.3 Other Bayesian Methods; 1.6 Other Induction Methods; 1.6.1 Neural Networks; 1.6.2 Genetic Algorithms; 1.6.3 Instance-based Learning; 1.6.4 Support Vector Machines
2. Introduction to Ensemble Learning 2.1 Back to the Roots; 2.2 The Wisdom of Crowds; 2.3 The Bagging Algorithm; 2.4 The Boosting Algorithm; 2.5 The Ada Boost Algorithm; 2.6 No Free Lunch Theorem and Ensemble Learning; 2.7 Bias-Variance Decomposition and Ensemble Learning; 2.8 Occam's Razor and Ensemble Learning; 2.9 Classifier Dependency; 2.9.1 Dependent Methods; 2.9.1.1 Model-guided Instance Selection; 2.9.1.2 Basic Boosting Algorithms; 2.9.1.3 Advanced Boosting Algorithms; 2.9.1.4 Incremental Batch Learning; 2.9.2 Independent Methods; 2.9.2.1 Bagging; 2.9.2.2 Wagging
2.9.2.3 Random Forest and Random Subspace Projection 2.9.2.4 Non-Linear Boosting Projection (NLBP); 2.9.2.5 Cross-validated Committees; 2.9.2.6 Robust Boosting; 2.10 Ensemble Methods for Advanced Classification Tasks; 2.10.1 Cost-Sensitive Classification; 2.10.2 Ensemble for Learning Concept Drift; 2.10.3 Reject Driven Classification; 3. Ensemble Classification; 3.1 Fusions Methods; 3.1.1 Weighting Methods; 3.1.2 Majority Voting; 3.1.3 Performance Weighting; 3.1.4 Distribution Summation; 3.1.5 Bayesian Combination; 3.1.6 Dempster-Shafer; 3.1.7 Vogging; 3.1.8 Naıve Bayes
3.1.9 Entropy Weighting 3.1.10 Density-based Weighting; 3.1.11 DEA Weighting Method; 3.1.12 Logarithmic Opinion Pool; 3.1.13 Order Statistics; 3.2 Selecting Classification; 3.2.1 Partitioning the Instance Space; 3.2.1.1 The K-Means Algorithm as a Decomposition Tool; 3.2.1.2 Determining the Number of Subsets; 3.2.1.3 The Basic K-Classifier Algorithm; 3.2.1.4 The Heterogeneity Detecting K-Classifier (HDK-Classifier); 3.2.1.5 Running-Time Complexity; 3.3 Mixture of Experts and Meta Learning; 3.3.1 Stacking; 3.3.2 Arbiter Trees; 3.3.3 Combiner Trees; 3.3.4 Grading; 3.3.5 Gating Network
4. Ensemble Diversity 4.1 Overview; 4.2 Manipulating the Inducer; 4.2.1 Manipulation of the Inducer's Parameters; 4.2.2 Starting Point in Hypothesis Space; 4.2.3 Hypothesis Space Traversal; 4.3 Manipulating the Training Samples; 4.3.1 Resampling; 4.3.2 Creation; 4.3.3 Partitioning; 4.4 Manipulating the Target Attribute Representation; 4.4.1 Label Switching; 4.5 Partitioning the Search Space; 4.5.1 Divide and Conquer; 4.5.2 Feature Subset-based Ensemble Methods; 4.5.2.1 Random-based Strategy; 4.5.2.2 Reduct-based Strategy; 4.5.2.3 Collective-Performance-based Strategy
4.5.2.4 Feature Set Partitioning
Record Nr. UNINA-9910826382103321
Rokach Lior  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui