top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection [[electronic resource] /] / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection [[electronic resource] /] / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Autore Zhou Xuefeng
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (XVII, 137 p. 50 illus., 44 illus. in color.)
Disciplina 629.892
Soggetto topico Robotics
Automation
Statistics 
Control engineering
Mechatronics
Machine learning
Mathematical models
Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Soggetto non controllato Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Robotic Engineering
Control, Robotics, Automation
Collaborative Robot Introspection
Nonparametric Bayesian Inference
Anomaly Monitoring and Diagnosis
Multimodal Perception
Anomaly Recovery
Human-robot Collaboration
Robot Safety and Protection
Hidden Markov Model
Robot Autonomous Manipulation
open access
Robotics
Bayesian inference
Automatic control engineering
Electronic devices & materials
Machine learning
Mathematical modelling
Maths for engineers
ISBN 981-15-6263-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Robot Introspection -- Nonparametric Bayesian Modeling of Multimodal Time Series -- Incremental Learning Robot Complex Task Representation and Identification -- Nonparametric Bayesian Method for Robot Anomaly Monitoring -- Nonparametric Bayesian Method for Robot Anomaly Diagnose -- Learning Policy for Robot Anomaly Recovery based on Robot.
Record Nr. UNISA-996418268803316
Zhou Xuefeng  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Autore Zhou Xuefeng
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (XVII, 137 p. 50 illus., 44 illus. in color.)
Disciplina 629.892
Soggetto topico Robotics
Automation
Statistics 
Control engineering
Mechatronics
Machine learning
Mathematical models
Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Soggetto non controllato Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Robotic Engineering
Control, Robotics, Automation
Collaborative Robot Introspection
Nonparametric Bayesian Inference
Anomaly Monitoring and Diagnosis
Multimodal Perception
Anomaly Recovery
Human-robot Collaboration
Robot Safety and Protection
Hidden Markov Model
Robot Autonomous Manipulation
open access
Robotics
Bayesian inference
Automatic control engineering
Electronic devices & materials
Machine learning
Mathematical modelling
Maths for engineers
ISBN 981-15-6263-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Robot Introspection -- Nonparametric Bayesian Modeling of Multimodal Time Series -- Incremental Learning Robot Complex Task Representation and Identification -- Nonparametric Bayesian Method for Robot Anomaly Monitoring -- Nonparametric Bayesian Method for Robot Anomaly Diagnose -- Learning Policy for Robot Anomaly Recovery based on Robot.
Record Nr. UNINA-9910416119103321
Zhou Xuefeng  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui