Vai al contenuto principale della pagina

Evaluation of Text Summaries Based on Linear Optimization of Content Metrics / / by Jonathan Rojas-Simon, Yulia Ledeneva, Rene Arnulfo Garcia-Hernandez



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rojas-Simon Jonathan Visualizza persona
Titolo: Evaluation of Text Summaries Based on Linear Optimization of Content Metrics / / by Jonathan Rojas-Simon, Yulia Ledeneva, Rene Arnulfo Garcia-Hernandez Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (222 pages)
Disciplina: 519.3
025.410285
Soggetto topico: Computational intelligence
Engineering - Data processing
Big data
Computational Intelligence
Data Engineering
Big Data
Nota di contenuto: Introduction -- Background of the ETS -- Fundamentals of the ETS -- State-of-the-art Automatic Evaluation Methods -- A Novel Methodology based on Linear Optimization of Metrics for the ETS -- Experimenting with Linear Optimization of Metrics for Single-document Summarization Evaluation -- Experimenting with Linear Optimization of Metrics for Multi-document Summarization Evaluation -- Conclusions and future considerations for the ETS.
Sommario/riassunto: This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.
Titolo autorizzato: Evaluation of Text Summaries Based on Linear Optimization of Content Metrics  Visualizza cluster
ISBN: 3-031-07214-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910588596803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Computational Intelligence, . 1860-9503 ; ; 1048