top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The design of modern microwave oscillators for wireless applications [[electronic resource] ] : theory and optimization / / Ulrich L. Rohde, Ajay Kumar Poddar, and Georg Böck
The design of modern microwave oscillators for wireless applications [[electronic resource] ] : theory and optimization / / Ulrich L. Rohde, Ajay Kumar Poddar, and Georg Böck
Autore Rohde Ulrich L
Pubbl/distr/stampa Hoboken, NJ, : J. Wiley, 2005
Descrizione fisica 1 online resource (561 p.)
Disciplina 621.381/323
Altri autori (Persone) PoddarAjay Kumar <1967->
BöckGeorg <1951->
Soggetto topico Oscillators, Microwave
Wireless communication systems - Equipment and supplies
ISBN 1-280-27577-4
9786610275779
0-470-36228-6
0-471-72717-2
0-471-72716-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THE DESIGN OF MODERN MICROWAVE OSCILLATORS FOR WIRELESS APPLICATIONS; CONTENTS; Foreword; Preface; Biographies; 1 Introduction; 1.1 Organization; 2 General Comments on Oscillators; 2.1 Sinusoidal Oscillators; 2.2 Phase Noise Effects; 2.3 Specifications of Oscillators and VCOs; 2.4 History of Microwave Oscillators; 2.5 Three Approaches to Designing Microwave Oscillators; 2.6 Colpitts Oscillator, Grounded Base Oscillator, and Meissen Oscillator; 2.7 Three-Reactance Oscillators Using Y-Parameters: An Introduction; 2.8 Voltage-Controlled Oscillators (VCOs); 3 Transistor Models; 3.1 Introduction
3.2 Bipolar Transistors3.3 Field-Effect Transistors (FETs); 3.4 Tuning Diodes; 4 Large-Signal S-Parameters; 4.1 Definition; 4.2 Large-Signal S-Parameter Measurements; 5 Resonator Choices; 5.1 LC Resonators; 5.2 Microstrip Resonators; 5.3 Ceramic Resonators; 5.4 Dielectric Resonators; 5.5 YIG-Based Resonators; 6 General Theory of Oscillators; 6.1 Oscillator Equations; 6.2 Large-Signal Oscillator Design; 7 Noise in Oscillators; 7.1 Linear Approach to the Calculation of Oscillator Phase Noise; 7.2 The Lee and Hajimiri Noise Model
7.3 Nonlinear Approach to the Calculation of Oscillator Phase Noise7.4 Phase Noise Measurements; 7.5 Support Circuits; 8 Calculation and Optimization of Phase Noise in Oscillators; 8.1 Introduction; 8.2 Oscillator Configurations; 8.3 Oscillator Phase Noise Model for the Synthesis Procedure; 8.4 Phase Noise Analysis Based on the Negative Resistance Model; 8.5 Phase Noise Analysis Based on the Feedback Model; 8.6 2400 MHz MOSFET-Based Push-Pull Oscillator; 8.7 Phase Noise, Biasing, and Temperature Effects; 9 Validation Circuits; 9.1 1000 MHz CRO
9.2 4100 MHz Oscillator with Transmission Line Resonators9.3 2000 MHz GaAs FET-Based Oscillator; 9.4 77 GHz SiGe Oscillator; 9.5 900-1800 MHz Half-Butterfly Resonator-Based Oscillator; 10 Systems of Coupled Oscillators; 10.1 Mutually Coupled Oscillators Using the Classical Pendulum Analogy; 10.2 Phase Condition for Mutually Locked (Synchronized) Coupled Oscillators; 10.3 Dynamics of Coupled Oscillators; 10.4 Dynamics of N-Coupled (Synchronized) Oscillators; 10.5 Oscillator Noise; 10.6 Noise Analysis of the Uncoupled Oscillator
10.7 Noise Analysis of Mutually Coupled (Synchronized) Oscillators10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators; 10.9 N-Push Coupled Mode (Synchronized) Oscillators; 10.10 Ultra-Low-Noise Wideband Oscillators; 11 Validation Circuits for Wideband Coupled Resonator VCOs; 11.1 300-1100 MHz Coupled Resonator Oscillator; 11.2 1000-2000/2000-4000 MHz Push-Push Oscillator; 11.3 1500-3000/3000-6000 MHz Dual Coupled Resonator Oscillator; 11.4 1000-2000/2000-4000 MHz Hybrid Tuned VCO; References; Appendix A Design of an Oscillator Using Large-Signal S-Parameters
Appendix B Example of a Large-Signal Design Based on Bessel Functions
Record Nr. UNINA-9910143583003321
Rohde Ulrich L  
Hoboken, NJ, : J. Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The design of modern microwave oscillators for wireless applications : theory and optimization / / Ulrich L. Rohde, Ajay Kumar Poddar, and Georg Bock
The design of modern microwave oscillators for wireless applications : theory and optimization / / Ulrich L. Rohde, Ajay Kumar Poddar, and Georg Bock
Autore Rohde Ulrich L
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, NJ, : J. Wiley, 2005
Descrizione fisica 1 online resource (561 p.)
Disciplina 621.381/323
Altri autori (Persone) PoddarAjay Kumar <1967->
BockGeorg <1951->
Soggetto topico Oscillators, Microwave
Wireless communication systems - Equipment and supplies
ISBN 9786610275779
9781280275777
1280275774
9780470362280
0470362286
9780471727170
0471727172
9780471727163
0471727164
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THE DESIGN OF MODERN MICROWAVE OSCILLATORS FOR WIRELESS APPLICATIONS; CONTENTS; Foreword; Preface; Biographies; 1 Introduction; 1.1 Organization; 2 General Comments on Oscillators; 2.1 Sinusoidal Oscillators; 2.2 Phase Noise Effects; 2.3 Specifications of Oscillators and VCOs; 2.4 History of Microwave Oscillators; 2.5 Three Approaches to Designing Microwave Oscillators; 2.6 Colpitts Oscillator, Grounded Base Oscillator, and Meissen Oscillator; 2.7 Three-Reactance Oscillators Using Y-Parameters: An Introduction; 2.8 Voltage-Controlled Oscillators (VCOs); 3 Transistor Models; 3.1 Introduction
3.2 Bipolar Transistors3.3 Field-Effect Transistors (FETs); 3.4 Tuning Diodes; 4 Large-Signal S-Parameters; 4.1 Definition; 4.2 Large-Signal S-Parameter Measurements; 5 Resonator Choices; 5.1 LC Resonators; 5.2 Microstrip Resonators; 5.3 Ceramic Resonators; 5.4 Dielectric Resonators; 5.5 YIG-Based Resonators; 6 General Theory of Oscillators; 6.1 Oscillator Equations; 6.2 Large-Signal Oscillator Design; 7 Noise in Oscillators; 7.1 Linear Approach to the Calculation of Oscillator Phase Noise; 7.2 The Lee and Hajimiri Noise Model
7.3 Nonlinear Approach to the Calculation of Oscillator Phase Noise7.4 Phase Noise Measurements; 7.5 Support Circuits; 8 Calculation and Optimization of Phase Noise in Oscillators; 8.1 Introduction; 8.2 Oscillator Configurations; 8.3 Oscillator Phase Noise Model for the Synthesis Procedure; 8.4 Phase Noise Analysis Based on the Negative Resistance Model; 8.5 Phase Noise Analysis Based on the Feedback Model; 8.6 2400 MHz MOSFET-Based Push-Pull Oscillator; 8.7 Phase Noise, Biasing, and Temperature Effects; 9 Validation Circuits; 9.1 1000 MHz CRO
9.2 4100 MHz Oscillator with Transmission Line Resonators9.3 2000 MHz GaAs FET-Based Oscillator; 9.4 77 GHz SiGe Oscillator; 9.5 900-1800 MHz Half-Butterfly Resonator-Based Oscillator; 10 Systems of Coupled Oscillators; 10.1 Mutually Coupled Oscillators Using the Classical Pendulum Analogy; 10.2 Phase Condition for Mutually Locked (Synchronized) Coupled Oscillators; 10.3 Dynamics of Coupled Oscillators; 10.4 Dynamics of N-Coupled (Synchronized) Oscillators; 10.5 Oscillator Noise; 10.6 Noise Analysis of the Uncoupled Oscillator
10.7 Noise Analysis of Mutually Coupled (Synchronized) Oscillators10.8 Noise Analysis of N-Coupled (Synchronized) Oscillators; 10.9 N-Push Coupled Mode (Synchronized) Oscillators; 10.10 Ultra-Low-Noise Wideband Oscillators; 11 Validation Circuits for Wideband Coupled Resonator VCOs; 11.1 300-1100 MHz Coupled Resonator Oscillator; 11.2 1000-2000/2000-4000 MHz Push-Push Oscillator; 11.3 1500-3000/3000-6000 MHz Dual Coupled Resonator Oscillator; 11.4 1000-2000/2000-4000 MHz Hybrid Tuned VCO; References; Appendix A Design of an Oscillator Using Large-Signal S-Parameters
Appendix B Example of a Large-Signal Design Based on Bessel Functions
Record Nr. UNINA-9910824562603321
Rohde Ulrich L  
Hoboken, NJ, : J. Wiley, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microwave and wireless synthesizers : theory and design / / Ulrich L. Rohde
Microwave and wireless synthesizers : theory and design / / Ulrich L. Rohde
Autore Rohde Ulrich L
Edizione [1st edition]
Pubbl/distr/stampa New York, : Wiley, c1997
Descrizione fisica 1 online resource (xvii, 638 p. ) : ill. ;
Disciplina 621.3815/486
Soggetto topico Frequency synthesizers - Design and construction
Phase-locked loops
Digital electronics
Microwave circuits - Design and construction
Radio frequency
Phase-locked loops - Design and construction
Microwave circuits
Electrical & Computer Engineering
Engineering & Applied Sciences
Electrical Engineering
ISBN 9786610556427
9781280556425
1280556420
9780470358351
0470358351
9780471224310
0471224316
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Loop fundamentals -- Noise and spurious response of loops -- Special loops -- Loop components -- Digital PLL synthesizers -- High-performance hybrid synthesizer.
Record Nr. UNINA-9910146248503321
Rohde Ulrich L  
New York, : Wiley, c1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
Autore Rohde Ulrich L
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (915 p.)
Disciplina 621.381/32
621.38132
Altri autori (Persone) RudolphMatthias <1969->
Soggetto topico Microwave circuits - Design and construction
Microwave integrated circuits - Computer-aided design
Radio frequency integrated circuits - Design and construction
Semiconductors - Computer-aided design
Wireless communication systems - Equipment and supplies - Design and construction
Soggetto genere / forma Electronic books.
ISBN 1-118-43148-0
1-283-85885-1
1-118-43140-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF/Microwave Circuit Design for WirelessI Applications; Contents; Foreword; Preface; 1 Introduction to Wireless Circuit Design; 1.1 Introduction; 1.2 System Functions; 1.3 The Radio Channel and Modulation Requirements; 1.3.1 Introduction; 1.3.2 Channel Impulse Response; 1.3.3 Doppler Effect; 1.3.4 Transfer Function; 1.3.5 Time Response of Channel Impulse Response and Transfer Function; 1.3.6 Lessons Learned; 1.3.7 Wireless Signal Example: The TDMA System in GSM; 1.3.7.1 Frequency Division Multiple Access (FDMA); 1.3.7.2 Time-Division Multiple Access (TDMA)
1.3.7.3 Code-Division Multiple Access (CDMA)1.3.7.4 TDMA in GSM; 1.3.7.5 TDMA Structure; 1.3.7.6 Bit Synchronization; 1.3.7.7 Compensation of Multipath Reception; 1.3.8 From GSM to UMTS to LTE; 1.4 About Bits, Symbols, and Waveforms; 1.4.1 Introduction; 1.4.1.1 Representation of a Modulated RF Carrier; 1.4.1.2 The Spectrum of a Digitally Modulated Carrier; 1.4.2 Some Fundamentals of Digital Modulation Techniques; 1.4.2.1 Spread-Spectrum and CDMA Modulation Techniques; 1.4.2.2 Orthogonal Frequency Division Modulation (OFDM) and Single- Carrier Frequency-Division Multiple Access (SC-FDMA)
1.5 Analysis of Wireless Systems1.5.1 Analog and Digital Receiver Designs; 1.5.1.1 Receiver Design Examples; 1.5.1.2 PLL CAD Simulation; 1.5.2 Transmitters; 1.5.2.1 Linear Digital Modulation; 1.5.2.2 Digital and Analog FM; 1.5.2.3 Single Sideband AM (SSB-AM); 1.5.2.4 Designing with the SA900; 1.5.2.5 ISM Band Application; 1.6 Building Blocks; 1.7 System Specifications and Their Relationship to Circuit Design; 1.7.1 System Noise and Noise Floor; 1.7.2 System Amplitude and Phase Behavior; 1.8 Testing; 1.8.1 Introduction; 1.8.2 Transmission and Reception Quality; 1.8.3 Base Station Simulation
1.8.4 GSM1.8.5 DECT; 1.9 Converting C/N or SNR to EB/N0; References; Further Reading; 2 Models for Active Devices; 2.1 Diodes; 2.1.1 Large-Signal Diode Model; 2.1.2 Mixer and Detector Diodes; 2.1.2.1 Junction Capacitance; 2.1.2.2 Parameter Trade-Offs; 2.1.2.3 Mixer Diodes; 2.1.2.4 Linear Diode Model; 2.1.3 PIN Diodes; 2.1.3.1 Introduction; 2.1.3.2 Large-Signal PIN Diode Model; 2.1.3.3 Basic Theory: Variable Resistance; 2.1.3.4 Breakdown Voltage, Capacitance, Q Factor; 2.1.3.5 PIN Diode Applications; 2.1.3.6 Example: A PIN Diode π Network for TV Tuners; 2.1.4 Tuning Diodes
2.1.4.1 Introduction2.1.4.2 Tuning Diode Physics; 2.1.4.3 Capacitance; 2.1.4.4 Q Factor or Diode Loss; 2.1.4.5 Distortion Products; 2.1.4.6 Electrical Properties of Tuning Diodes; 2.1.4.7 Diode-Tuned Resonant Circuits; 2.2 Bipolar Transistors; 2.2.1 Transistor Structure Types; 2.2.2 Large-Signal Behavior of Bipolar Transistors; 2.2.2.1 Electrical Characteristics and Specifications; 2.2.3 Large-Signal Transistors in the Forward-Active Region; 2.2.4 Improving RF Performance by Means of Heterostructures
2.2.5 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region of BJTs
Record Nr. UNINA-9910462946803321
Rohde Ulrich L  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
RF/microwave circuit design for wireless applications [[electronic resource] /] / Ulrich L. Rohde, Matthias Rudolph
Autore Rohde Ulrich L
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica xix, 893 p. : ill
Altri autori (Persone) RudolphMatthias <1969->
Soggetto topico Microwave circuits - Design and construction
Microwave integrated circuits - Computer-aided design
Radio frequency integrated circuits - Design and construction
Semiconductors - Computer-aided design
Wireless communication systems - Equipment and supplies - Design and construction
ISBN 1-118-43140-5
1-283-85885-1
1-118-43148-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795967903321
Rohde Ulrich L  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications / / Ulrich L. Rohde, Matthias Rudolph
RF/microwave circuit design for wireless applications / / Ulrich L. Rohde, Matthias Rudolph
Autore Rohde Ulrich L
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica xix, 893 p. : ill
Disciplina 621.381/32
Altri autori (Persone) RudolphMatthias <1969->
Soggetto topico Microwave circuits - Design and construction
Microwave integrated circuits - Computer-aided design
Radio frequency integrated circuits - Design and construction
Semiconductors - Computer-aided design
Wireless communication systems - Equipment and supplies - Design and construction
ISBN 1-118-43140-5
1-283-85885-1
1-118-43148-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF/Microwave Circuit Design for WirelessI Applications -- Contents -- Foreword -- Preface -- 1 Introduction to Wireless Circuit Design -- 1.1 Introduction -- 1.2 System Functions -- 1.3 The Radio Channel and Modulation Requirements -- 1.3.1 Introduction -- 1.3.2 Channel Impulse Response -- 1.3.3 Doppler Effect -- 1.3.4 Transfer Function -- 1.3.5 Time Response of Channel Impulse Response and Transfer Function -- 1.3.6 Lessons Learned -- 1.3.7 Wireless Signal Example: The TDMA System in GSM -- 1.3.7.1 Frequency Division Multiple Access (FDMA) -- 1.3.7.2 Time-Division Multiple Access (TDMA) -- 1.3.7.3 Code-Division Multiple Access (CDMA) -- 1.3.7.4 TDMA in GSM -- 1.3.7.5 TDMA Structure -- 1.3.7.6 Bit Synchronization -- 1.3.7.7 Compensation of Multipath Reception -- 1.3.8 From GSM to UMTS to LTE -- 1.4 About Bits, Symbols, and Waveforms -- 1.4.1 Introduction -- 1.4.1.1 Representation of a Modulated RF Carrier -- 1.4.1.2 The Spectrum of a Digitally Modulated Carrier -- 1.4.2 Some Fundamentals of Digital Modulation Techniques -- 1.4.2.1 Spread-Spectrum and CDMA Modulation Techniques -- 1.4.2.2 Orthogonal Frequency Division Modulation (OFDM) and Single- Carrier Frequency-Division Multiple Access (SC-FDMA) -- 1.5 Analysis of Wireless Systems -- 1.5.1 Analog and Digital Receiver Designs -- 1.5.1.1 Receiver Design Examples -- 1.5.1.2 PLL CAD Simulation -- 1.5.2 Transmitters -- 1.5.2.1 Linear Digital Modulation -- 1.5.2.2 Digital and Analog FM -- 1.5.2.3 Single Sideband AM (SSB-AM) -- 1.5.2.4 Designing with the SA900 -- 1.5.2.5 ISM Band Application -- 1.6 Building Blocks -- 1.7 System Specifications and Their Relationship to Circuit Design -- 1.7.1 System Noise and Noise Floor -- 1.7.2 System Amplitude and Phase Behavior -- 1.8 Testing -- 1.8.1 Introduction -- 1.8.2 Transmission and Reception Quality -- 1.8.3 Base Station Simulation -- 1.8.4 GSM.
1.8.5 DECT -- 1.9 Converting C/N or SNR to EB/N0 -- References -- Further Reading -- 2 Models for Active Devices -- 2.1 Diodes -- 2.1.1 Large-Signal Diode Model -- 2.1.2 Mixer and Detector Diodes -- 2.1.2.1 Junction Capacitance -- 2.1.2.2 Parameter Trade-Offs -- 2.1.2.3 Mixer Diodes -- 2.1.2.4 Linear Diode Model -- 2.1.3 PIN Diodes -- 2.1.3.1 Introduction -- 2.1.3.2 Large-Signal PIN Diode Model -- 2.1.3.3 Basic Theory: Variable Resistance -- 2.1.3.4 Breakdown Voltage, Capacitance, Q Factor -- 2.1.3.5 PIN Diode Applications -- 2.1.3.6 Example: A PIN Diode π Network for TV Tuners -- 2.1.4 Tuning Diodes -- 2.1.4.1 Introduction -- 2.1.4.2 Tuning Diode Physics -- 2.1.4.3 Capacitance -- 2.1.4.4 Q Factor or Diode Loss -- 2.1.4.5 Distortion Products -- 2.1.4.6 Electrical Properties of Tuning Diodes -- 2.1.4.7 Diode-Tuned Resonant Circuits -- 2.2 Bipolar Transistors -- 2.2.1 Transistor Structure Types -- 2.2.2 Large-Signal Behavior of Bipolar Transistors -- 2.2.2.1 Electrical Characteristics and Specifications -- 2.2.3 Large-Signal Transistors in the Forward-Active Region -- 2.2.4 Improving RF Performance by Means of Heterostructures -- 2.2.5 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region of BJTs -- 2.2.6 Effects of Collector Current and Voltage on Large-Signal Characteristics in the Forward-Active Region of HBTs -- 2.2.7 Saturation and Inverse Active Regions -- 2.2.8 Self-Heating -- 2.2.9 Small-Signal Models of Bipolar Transistors -- 2.3 Field-Effect Transistors -- 2.4 Large-Signal Behavior of JFETs -- 2.4.1 Small-Signal Behavior of JFETs -- 2.4.2 Large-Signal Behavior of MOSFETs -- 2.4.2.1 Transfer Characteristics of MOS Devices -- 2.4.2.2 MOS Device Voltage Limitations -- 2.4.3 Small-Signal Model of the MOS Transistor in Saturation -- 2.4.4 Short-Channel Effects in FETs -- 2.4.5 Small-Signal Models of MOSFETs.
2.4.5.1 Subthreshold Conduction in MOSFETs -- 2.4.5.2 Substrate Flow in MOSFETs -- 2.4.6 III-V MESFETs and HEMTs -- 2.4.6.1 Introduction -- 2.4.6.2 HEMTs -- 2.4.6.3 Large-Signal Behavior of MESFETs and HEMTs -- 2.4.6.4 The Modified Materka-Kacprzak Model -- 2.4.6.5 Enhancement/Depletion FETs -- 2.4.7 Small-Signal GaAs MESFET and HEMT Model -- 2.5 Parameter Extraction of Active Devices -- 2.5.1 Introduction -- 2.5.2 Typical SPICE Parameters -- 2.5.3 Noise Modeling -- 2.5.3.1 Diode Noise Model -- 2.5.3.2 BJT Noise Model -- 2.5.3.3 JFET and MESFET Noise Model -- 2.5.3.4 MOSFET Noise Model -- 2.5.4 Scalable Device Models -- 2.5.5 Generating a Databank for Parameter Extraction -- 2.5.5.1 MESFETs -- 2.5.5.2 A Case Study -- 2.5.6 Conclusions -- 2.5.7 Device Libraries -- 2.5.8 Physics-Based MESFET Modeling -- 2.5.9 Example: Improving the BFR193W Model -- References -- Further Reading -- 3 Amplifier Design with BJTs and FETs -- 3.1 Properties of Amplifiers -- 3.1.1 Introduction -- 3.1.2 Gain -- 3.1.3 Noise Figure (NF) -- 3.1.4 Linearity -- 3.1.5 AGC -- 3.1.6 Bias and Power Voltage and Current (Power Consumption) -- 3.2 Amplifier Gain, Stability, and Matching -- 3.2.1 Scattering Parameter Relationships -- 3.2.2 Low-Noise Amplifiers -- 3.2.3 High-Gain Amplifiers -- 3.2.4 Low-Voltage Open-Collector Design -- 3.3 Single-Stage Feedback Amplifiers -- 3.3.1 Lossless or Noiseless Feedback -- 3.3.2 Broadband Matching -- 3.4 Two-Stage Amplifiers -- 3.5 Amplifiers with Three or More Stages -- 3.5.1 Stability of Multistage Amplifiers -- 3.6 A Novel Approach to Voltage-Controlled Tuned Filters Including CAD Validation -- 3.6.1 Diode Performance -- 3.6.2 A VHF Example -- 3.6.3 An HF/VHF Voltage-Controlled Filter -- 3.6.4 Improving the VHF Filter -- 3.6.5 Conclusion -- 3.7 Differential Amplifiers -- 3.8 Frequency Doublers.
3.9 Multistage Amplifiers with Automatic Gain Control (AGC) -- 3.10 Biasing -- 3.10.1 RF Biasing -- 3.10.2 dc Biasing -- 3.10.3 dc Biasing of IC-Type Amplifiers -- 3.11 Push-Pull/Parallel Amplifiers -- 3.12 Power Amplifiers -- 3.12.1 Example 1: 7-W Class C BJT Amplifier for 1.6 GHz -- 3.12.2 Example: A Highly Efficient 3.5 GHz Inverse Class-F GaN HEMT Power Amplifier -- 3.12.2.1 Inverse Class-F PAs -- 3.12.2.2 Design Methodology -- 3.12.2.3 Implementation and Measurement Results -- 3.12.2.4 Conclusions -- 3.12.3 Linear Amplifier Systems -- 3.12.3.1 Class A/AB Operation and Power Back-Off -- 3.12.3.2 RF Feedback -- 3.12.3.3 Modulation Feedback -- 3.12.3.4 Feedforward -- 3.12.3.5 Predistortion -- 3.12.3.6 Baseband Predistortion -- 3.12.4 Impedance Matching Networks Applied to RF Power Transistors -- 3.12.5 Example 2: Low-Noise Amplifier Using Distributed Elements -- 3.12.6 Example 3: 1-W Amplifier Using the CLY15 -- 3.12.7 Example 4: 90-W Push-Pull BJT Amplifier at 430 MHz -- 3.12.8 Quasiparallel Transistors for Improved Linearity -- 3.12.9 Distribution Amplifiers -- 3.12.10 Stability Analysis of a Power Amplifier -- References -- Further Reading -- 4 Mixer Design -- 4.1 Introduction -- 4.2 Properties of Mixers -- 4.2.1 Conversion Gain/Loss -- 4.2.2 Noise Figure -- 4.2.2.1 Passive Mixer -- 4.2.2.2 Example -- 4.2.2.3 Exact Mathematical Nonlinear Approach -- 4.2.2.4 Differential CMOS Mixer -- 4.2.2.5 SSB Versus DSB Noise Figure -- 4.2.3 Linearity -- 4.2.3.1 1 dB Compression Point -- 4.2.3.2 1 dB Desensitization Point -- 4.2.3.3 Dynamic Range -- 4.2.3.4 Harmonic Intermodulation Products (HIP) -- 4.2.3.5 Intermodulation Distortion (IMD) -- 4.2.4 LO Drive Level -- 4.2.5 Interport Isolation -- 4.2.6 Port VSWR -- 4.2.7 dc Offset -- 4.2.8 dc Polarity -- 4.2.9 Power Consumption -- 4.3 Diode Mixers -- 4.3.1 Single-Diode Mixer -- 4.3.2 Single-Balanced Mixer.
4.3.2.1 Subharmonically Pumped Single-Balanced Mixer -- 4.3.3 Diode-Ring Mixer -- 4.3.3.1 Termination-Insensitive Mixer -- 4.3.3.2 Phase Detector -- 4.3.3.3 Binary Phase-Shift Keying (BPSK) Modulator -- 4.3.3.4 Quadrature Phase-Shift Keying (QPSK) Modulator -- 4.3.3.5 Quadrature IF Mixer -- 4.3.3.6 Image-Reject Mixer -- 4.3.3.7 Diode Attenuator/Switch -- 4.3.3.8 Single-Sideband (SSB) or In-Phase/Quadrature (I/Q) Modulator -- 4.3.3.9 Triple-Balanced Mixer -- 4.3.3.10 Rohde and Schwarz Subharmonically Pumped DBM -- 4.4 Transistor Mixers -- 4.4.1 BJT Gilbert Cell -- 4.4.2 BJT Gilbert Cell with Feedback -- 4.4.3 FET Mixers -- 4.4.4 MOSFET Gilbert Cell -- 4.4.5 GaAsFET Single-Gate Switch-Resistive Mixer -- 4.4.5.1 Noise in Resistive Mixers -- References -- Further Reading -- 5 RF/Wireless Oscillators -- 5.1 Introduction of Frequency Control -- 5.2 Background -- 5.3 Oscillator Design -- 5.3.1 Basics of Oscillators -- 5.3.1.1 Example 1 -- 5.3.1.2 Example 2 -- 5.3.1.3 Two-Port Oscillator -- 5.3.1.4 Amplitude Stability -- 5.3.1.5 Phase Stability -- 5.4 Oscillator Circuits -- 5.4.1 Hartley -- 5.4.2 Colpitts -- 5.4.3 Clapp-Gouriet -- 5.5 Design of RF Oscillators -- 5.5.1 General Thoughts on Transistor Oscillators -- 5.5.2 Two-Port Microwave/RF Oscillator Design -- 5.5.3 Ceramic-Resonator Oscillators -- 5.5.3.1 Calculation of Equivalent Circuit -- 5.5.4 Using a Microstrip Inductor as the Oscillator Resonator -- 5.5.4.1 Increasing Loaded Q -- 5.5.4.2 High-Q Microstrip Inductor -- 5.5.4.3 UHF VCO Using the Tapped-Inductor Differential Oscillator at 900 MHz -- 5.5.5 Hartley Microstrip Resonator Oscillator -- 5.5.6 Crystal Oscillators -- 5.5.7 Voltage-Controlled Oscillators -- 5.5.8 Diode-Tuned Resonant Circuits -- 5.5.8.1 Tuner Diode in Parallel-Resonant Circuit -- 5.5.8.2 Capacitances Connected in Parallel or in Series with the Tuning Diode -- 5.5.8.3 Tuning Range.
5.5.8.4 Tracking.
Record Nr. UNINA-9910958624203321
Rohde Ulrich L  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF/microwave circuit design for wireless applications / / Ulrich L. Rohde, David P. Newkirk
RF/microwave circuit design for wireless applications / / Ulrich L. Rohde, David P. Newkirk
Autore Rohde Ulrich L
Pubbl/distr/stampa New York, : John Wiley, c2000
Descrizione fisica 1 online resource (977 p.)
Disciplina 621.381/32
621.3815
Altri autori (Persone) NewkirkDavid P
Soggetto topico Microwave integrated circuits - Computer-aided design
Wireless communication systems - Equipment and supplies - Design
Semiconductors - Computer-aided design
Radio frequency
ISBN 9786610264711
9781280264719
1280264713
9780470350133
047035013X
9780471463801
0471463809
9781601194053
1601194056
9780471224136
0471224138
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Foreword; Preface; 1 Introduction to Wireless Circuit Design; 1-1 Overview; 1-2 System Functions; 1-3 The Radio Channel and Modulation Requirements; 1-3-1 Introduction; 1-3-2 Channel Impulse Response; 1-3-3 Doppler Effect; 1-3-4 Transfer Function; 1-3-5 Time Response of Channel Impulse Response and Transfer Function; 1-3-6 Lessons Learned; 1-3-7 Wireless Signal Example: The TDMA System in GSM; 1-4 About Bits, Symbols, and Waveforms; 1-4-1 Introduction; 1-4-2 Some Fundamentals of Digital Modulation Techniques; 1-5 Analysis of Wireless Systems
1-5-1 Analog and Digital Receiver Designs1-5-2 Transmitters; 1-6 Building Blocks; 1-7 System Specifications and Their Relationship to Circuit Design; 1-7-1 System Noise and Noise Floor; 1-7-2 System Amplitude and Phase Behavior; 1-8 Testing; 1-8-1 Introduction; 1-8-2 Transmission and Reception Quality; 1-8-3 Base-Station Simulation; 1-8-4 GSM; 1-8-5 DECT; 1-9 Converting C/N or SNR to E[sub(b)]/N[sub(o)]; 2 Models for Active Devices; 2-1 Diodes; 2-1-1 Large-Signal Diode Model; 2-1-2 Mixer and Detector Diodes; 2-1-3 PIN Diodes; 2-1-4 Tuning Diodes; 2-2 Bipolar Transistors
2-2-1 Transistor Structure Types2-2-2 Large-Signal Behavior of Bipolar Transistors; 2-2-3 Large-Signal Transistors in the Forward-Active Region; 2-2-4 Effects of Collector Voltage on Large-Signal Characteristics in the Forward-Active Region; 2-2-5 Saturation and Inverse Active Regions; 2-2-6 Small-Signal Models of Bipolar Transistors; 2-3 Field-Effect Transistors; 2-3-1 Large-Signal Behavior of JFETs; 2-3-2 Small-Signal Behavior of JFETs; 2-3-3 Large-Signal Behavior of MOSFETs; 2-3-4 Small-Signal Model of the MOS Transistor in Saturation; 2-3-5 Short-Channel Effects in FETs
2-3-6 Small-Signal Models of MOSFETs2-3-7 GaAs MESFETs; 2-3-8 Small-Signal GaAs MESFET Model; 2-4 Parameter Extraction of Active Devices; 2-4-1 Introduction; 2-4-2 Typical SPICE Parameters; 2-4-3 Noise Modeling; 2-4-4 Scalable Device Models; 2-4-5 Conclusions; 2-4-6 Device Libraries; 2-4-7 A Novel Approach for Simulation at Low Voltage and Near Pinchoff Voltage; 2-4-8 Example: Improving the BFR193W Model; 3 Amplifier Design with BJTs and FETs; 3-1 Properties of Amplifiers; 3-1-1 Introduction; 3-1-2 Gain; 3-1-3 Noise Figure (NF); 3-1-4 Linearity; 3-1-5 AGC
3-1-6 Bias and Power Voltage and Current (Power Consumption)3-2 Amplifier Gain, Stability, and Matching; 3-2-1 Scattering Parameter Relationships; 3-2-2 Low-Noise Amplifiers; 3-2-3 High-Gain Amplifiers; 3-2-4 Low-Voltage Open-Collector Design; 3-3 Single-Stage FeedBack Amplifiers; 3-3-1 Lossless or Noiseless Feedback; 3-3-2 Broadband Matching; 3-4 Two-Stage Amplifiers; 3-5 Amplifiers with Three or More Stages; 3-5-1 Stability of Multistage Amplifiers; 3-6 A Novel Approach to Voltage-Controlled Tuned Filters Including CAD Validation; 3-6-1 Diode Performance; 3-6-2 A VHF Example
3-6-3 An HF/VHF Voltage-Controlled Filter
Record Nr. UNINA-9911019617403321
Rohde Ulrich L  
New York, : John Wiley, c2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui