Practical Applications of Computational Biology and Bioinformatics, 15th International Conference (PACBB 2021) |
Autore | Rocha Miguel |
Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2021 |
Descrizione fisica | 1 online resource (188 pages) |
Altri autori (Persone) |
Fdez-RiverolaFlorentino
MohamadMohd Saberi Casado-VaraRoberto |
Collana | Lecture Notes in Networks and Systems Ser. |
Soggetto genere / forma | Electronic books. |
ISBN | 3-030-86258-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Practical Applications of Computational Biology & Bioinformatics, 15th International Conference |
Record Nr. | UNINA-9910497093203321 |
Rocha Miguel | ||
Cham : , : Springer International Publishing AG, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Practical Applications of Computational Biology and Bioinformatics, 17th International Conference (PACBB 2023) / / edited by Miguel Rocha, Florentino Fdez-Riverola, Mohd Saberi Mohamad, Ana Belén Gil-González |
Autore | Rocha Miguel |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (113 pages) |
Disciplina | 006.3 |
Altri autori (Persone) |
Fdez-RiverolaFlorentino
MohamadMohd Saberi Gil-GonzálezAna Belén |
Collana | Lecture Notes in Networks and Systems |
Soggetto topico |
Computational intelligence
Artificial intelligence Bioinformatics Computational Intelligence Artificial Intelligence |
ISBN | 3-031-38079-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Contents -- Main Track -- The Impact of Schizophrenia Misdiagnosis Rates on Machine Learning Models Performance -- 1 Introduction -- 2 Methods -- 2.1 Data Description and Quality Control -- 2.2 Genotype-Phenotype Association -- 2.3 Machine Learning Models -- 2.4 Over-Representation Analysis -- 3 Results -- 3.1 Association Test -- 3.2 Test on Train Data -- 3.3 Filtering of Discordant Samples -- 3.4 Classification Model -- 4 Discussion -- 5 Conclusion -- References -- Deep Learning and Transformers in MHC-Peptide Binding and Presentation Towards Personalized Vaccines in Cancer Immunology: A Brief Review -- 1 Introduction -- 2 Methodology -- 3 Input Encoding -- 4 Deep Learning and Transformers Methods -- 4.1 Deep Learning -- 4.2 Transformers -- 5 Discussion -- References -- Auto-phylo: A Pipeline Maker for Phylogenetic Studies -- 1 Introduction -- 2 Material and Methods -- 3 Results -- 3.1 Auto-phylo Modules -- 3.2 Setting up an Auto-phylo Pipeline -- 3.3 Bacterial AOs May Have a Function Similar to Animal GULOs -- 3.4 Identification of Bacterial Species Groups that Have AOs Closely Related to Animal GULOs -- 4 Conclusion -- References -- Feature Selection Methods Comparison: Logistic Regression-Based Algorithm and Neural Network Tools -- 1 Introduction -- 1.1 Classification Problem -- 1.2 Feature Selection Methods -- 2 Methods and Materials -- 2.1 Logistic Regression-Based Algorithm -- 2.2 Neural Networks Approach -- 2.3 Materials -- 3 Results -- 3.1 Logistic Regression-Based Algorithm -- 3.2 Neural Networks Approach -- 3.3 Results Comparison -- 4 Conclusions -- References -- A New GIMME-Based Heuristic for Compartmentalised Transcriptomics Data Integration -- 1 Introduction -- 2 Methods -- 2.1 Flux Balance Analysis -- 2.2 Gene Inactivity Moderated by Metabolism and Expression.
2.3 Implementation of the Proposed Method -- 2.4 The Model -- 2.5 The Dataset -- 3 Results -- 3.1 Case Studies -- 4 Discussion and Conclusions -- References -- Identifying Heat-Resilient Corals Using Machine Learning and Microbiome -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Pipeline -- 3.2 Experimental Setup -- 4 Results -- 5 Analysis and Discussion -- 6 Conclusion -- References -- Machine Learning Based Screening Tool for Alzheimer's Disease via Gut Microbiome -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Experimental Analysis -- 4.1 Experimental Settings -- 4.2 Experimental Results -- 4.3 Discussion -- 5 Conclusion and Future Work -- References -- Progressive Multiple Sequence Alignment for COVID-19 Mutation Identification via Deep Reinforcement Learning -- 1 Introduction -- 2 Methodology -- 2.1 Progressive Deep Reinforcement Learning -- 2.2 Sequence Alignment -- 3 Result and Discussion -- 3.1 Analysis of Alignment Results -- 4 Conclusion -- References -- Analysis of the Confidence in the Prediction of the Protein Folding by Artificial Intelligence -- 1 Introduction -- 2 Metrics and Scores -- 3 Material and Methods -- 4 Results -- 5 Discussion -- 6 Conclusions and Future Work -- References -- Doctoral Consortium -- Neoantigen Detection Using Transformers and Transfer Learning in the Cancer Immunology Context -- 1 Introduction -- 2 Problem Statement -- 3 Related Work -- 4 Hypothesis -- 5 Proposal -- 6 Preliminary Results -- 7 Reflections -- References -- Author Index. |
Record Nr. | UNINA-9910734837203321 |
Rocha Miguel | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|