top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biocomputing 2018 - Proceedings Of The Pacific Symposium
Biocomputing 2018 - Proceedings Of The Pacific Symposium
Autore Altman Russ B
Pubbl/distr/stampa World Scientific Publishing Co, 2017
Descrizione fisica 1 online resource (649 pages)
Altri autori (Persone) DunkerA. Keith <1943-> (Alan Keith)
HunterLawrence <1961->
RitchieMarylyn D
MurrayTiffany A
KleinTeri E
Soggetto non controllato Protein Interactions
Metabolomics
Biocomputing
Computational Genetics
Ontology
Computational Proteomics
Bioinformatics
ISBN 981-323-553-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Biocomputing 2018
Record Nr. UNINA-9910346695003321
Altman Russ B  
World Scientific Publishing Co, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biocomputing 2019 - Proceedings Of The Pacific Symposium
Biocomputing 2019 - Proceedings Of The Pacific Symposium
Autore Altman Russ B
Pubbl/distr/stampa World Scientific Publishing Co, 2018
Descrizione fisica 1 online resource (471 pages)
Altri autori (Persone) DunkerA. Keith <1943-> (Alan Keith)
HunterLawrence <1961->
RitchieMarylyn D
MurrayTiffany A
KleinTeri E
Soggetto non controllato Protein Interactions
Metabolomics
Biocomputing
Computational Genetics
Ontology
Computational Proteomics
Bioinformatics
ISBN 981-327-982-6
981-327-981-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- PATTERN RECOGNITION IN BIOMEDICAL DATA: CHALLENGES IN PUTTING BIG DATA TO WORK -- Session introduction -- Introduction -- References -- Learning Contextual Hierarchical Structure of Medical Concepts with Poincairé Embeddings to Clarify Phenotypes -- 1. Introduction -- 2. Methods -- 2.1. Source Code -- 2.2. Data Source -- 2.3. Data Selection and Preprocessing -- 2.3.1. Reference ICD9 Example -- 2.3.2. Real Member Analyses -- 2.4. Poincaré Embeddings -- 2.5. Processing and Evaluating Embeddings -- 3. Results -- 3.1. ICD9 Hierarchy Evaluation -- 3.2. Poincaré Embeddings on 10 Million Members -- 3.3. Comparison with Euclidean Embeddings -- 3.4. Cohort Specific Embeddings -- 4. Discussion and Conclusion -- 5. Acknowledgments -- References -- The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data -- 1. Introduction -- 2. Background -- 2.1. Multitask nets -- 3. Methods -- 3.1. Dataset Construction and Design -- 3.2. Experimental Design -- 4. Experiments and Results -- 4.1. When Does Multitask Learning Improve Performance? -- 4.2. Relationship Between Performance and Number of Tasks -- 4.3. Comparison with Logistic Regression Baseline -- 4.4. Interaction between Phenotype Prevalence and Complexity -- 5. Limitations -- 6. Conclusion -- Acknowledgments -- References -- ODAL: A one-shot distributed algorithm to perform logistic regressions on electronic health records data from multiple clinical sites -- 1. Introduction -- 1.1. Integrate evidence from multiple clinical sites -- 1.2. Distributed Computing -- 2. Material and Method -- 2.1. Clinical Cohort and Motivating Problem -- 2.2. Algorithm -- 2.3. Simulation Design -- 3. Results -- 3.1. Simulation Results -- 3.2. Fetal Loss Prediction via ODAL -- 4. Discussion -- References.
PVC Detection Using a Convolutional Autoencoder and Random Forest Classifier -- 1. Introduction -- 2. Methods -- 2.1. Data Set and Implementation -- 2.2. Proposed PVC Detection Method -- 2.2.1. Feature Extraction -- 2.2.2. Classification -- 3. Results -- 3.1. Full Database Evaluation -- 3.2. Timing Disturbance Evaluation -- 3.3. Cross-Patient Training Evaluation -- 3.4. Estimated Parameters and Convergence -- 4. Discussion -- References -- Removing Confounding Factors Associated Weights in Deep Neural Networks Improves the Prediction Accuracy for Healthcare Applications -- 1. Introduction -- 2. Related Work -- 3. Confounder Filtering (CF) Method -- 3.1. Overview -- 3.2. Method -- 3.3. Availability -- 4. Experiments -- 4.1. lung adenocarcinoma prediction -- 4.1.1. Data -- 4.1.2. Results -- 4.2. Segmentation on right ventricle(RV) of Heart -- 4.2.1. Data -- 4.2.2. Results -- 4.3. Students' confusion status prediction -- 4.3.1. Data -- 4.3.2. Results -- 4.4. Brain tumor prediction -- 4.4.1. Data -- 4.4.2. Results -- 4.5. Analyses of the method behaviors -- 5. Conclusion -- 6. Acknowledgement -- References -- DeepDom: Predicting protein domain boundary from sequence alone using stacked bidirectional LSTM -- 1. Introduction -- 2. METHODS -- 2.1 Data Set Preparation -- 2.2 Input Encoding -- 2.3 Model Architecture -- 2.4 Evaluation criteria -- 3. RESULTS AND DISCUSSION -- 3.1 Parameter configuration experiments on test data -- 3.2 Comparison with Other Domain Boundary Predictors -- 3.2.1 Free modeling targets from CASP 9 -- 3.2.2 Multi-domain targets from CASP 9 -- 3.2.3 Discontinuous domain target from CASP 8 -- 4. CONCLUSION -- 5. ACKNOWLEDGEMENTS -- REFERENCES -- Res2s2aM: Deep residual network-based model for identifying functional noncoding SNPs in trait-associated regions -- 1. Introduction -- 2. Background theory.
3. Dataset for training and testing -- 3.1. Source databases -- 3.2. Dataset generation -- 4. Methods -- 4.1. ResNet architecture in our model -- 4.2. Tandem inputs of forward- and reverse-strand sequences -- 4.3. Biallelic high-level network structure -- 4.4. Incorporating HaploReg SNP annotation features -- 4.5. Training of models -- 5. Results -- 6. Conclusions and discussion -- Acknowledgements -- References -- DNA Steganalysis Using Deep Recurrent Neural Networks -- 1. Introduction -- 2. Background -- 2.1. Notations -- 2.2. Hiding Messages -- 2.3. Determination of Message-Hiding Regions -- 3. Methods -- 3.1. Proposed DNA Steganalysis Principle -- 3.2. Proposed Steganalysis RNN Model -- 4. Results -- 4.1. Dataset -- 4.2. Input Representation -- 4.3. Model Training -- 4.4. Evaluation Procedure -- 4.5. Performance Comparison -- 5. Discussion -- Acknowledgments -- References -- Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature -- 1. Introduction -- 2. Related Work -- 3. Methods -- 3.1. Toponym Detection -- 3.1.1. Recurrent Neural Networks -- 3.1.2. LSTM -- 3.1.3. Other Gated RNN Architectures -- 3.1.4. Hyperparameter search and optimization -- 3.2. Toponym Disambiguation -- 3.2.1. Building Geonames Index -- 3.2.2. Searching Geonames Index -- 4. Results and Discussion -- 4.1. Toponym Disambiguation -- 4.2. Toponym Resolution -- 5. Limitations and Future Work -- 6. Conclusion -- Acknowledgments -- Funding -- References -- Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep Reinforcement Learning -- 1. Introduction -- 2. Related Work -- 3. Method -- 3.1. Model Framework -- 3.2. Deep Reinforcement Learning for Organizing Actions -- 3.3. Preprocessing and Name Entity Recognition with UMLS -- 3.4. Bidirectional LSTM for Relation Classification.
3.5. Algorithm -- 3.6. Implementation Specification -- 4. Experiments -- 4.1. Data -- 4.2. Evaluation -- 4.3. Results -- 4.3.1. Improved Reliability -- 4.3.2. Robustness in Real-world Situations -- 4.3.3. Number of Articles Read -- 5. Conclusions and Future Work -- 6. Acknowledgement -- References -- Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies -- 1. Introduction -- 2. Methods -- 2.1. Performance measures: definitions and estimation -- 2.2. Positive-unlabeled setting -- 2.3. Performance measure correction -- 3. Experiments and Results -- 3.1. A case study -- 3.2. Data sets -- 3.3. Experimental protocols -- 3.4. Results -- 4. Conclusions -- Acknowledgements -- References -- PLATYPUS: A Multiple-View Learning Predictive Framework for Cancer Drug Sensitivity Prediction -- 1. Introduction -- 2. System and methods -- 2.1. Data -- 2.2. Single views and co-training -- 2.3. Maximizing agreement across views through label assignment -- 3. Results -- 3.1. Preliminary experiments to optimize PLATYPUS performance -- 3.2. Predicting drug sensitivity in cell lines -- 3.3. Key features from PLATYPUS models -- 4. Conclusions -- Acknowledgments -- References -- Computational KIR copy number discovery reveals interaction between inhibitory receptor burden and survival -- 1. Introduction -- 2. Materials and Methods -- 2.1 Data collection -- 2.2 K-mer selection -- 2.3 NGS pipeline and k-mer extraction -- 2.4 Data cleaning -- 2.5 Normalization of k-mer frequencies -- 2.6 Copy number segregation and cutoff selection -- 2.7 Validation of copy number -- 2.8 Survival analysis -- 2.9 Additional immune analysis -- 3. Results and Discussions -- 3.1 Establishing unique k-mers -- 3.2 Varying coverage of KIR region by exome capture kit -- 3.3 Inference of KIR copy number -- 3.4 Population variation of the KIR region.
3.5 KIR inhibitory gene burden correlates with survival in cervical and uterine cancer -- 5. Conclusions -- 6. Acknowledgements -- 7. Supplementary Material -- References -- Exploring microRNA Regulation of Cancer with Context-Aware Deep Cancer Classifier -- 1. Introduction -- 2. Data -- 2.1. Preprocessing -- 3. Deep Cancer Classifier -- 3.1. Training & -- testing -- 3.2. Parameter tuning -- 3.3. Feature importance -- 4. Results and Discussion -- 4.1. Model selection -- 4.2. Classifier performance -- 4.3. Comparison with other methods -- 4.4. Feature importance -- 5. Conclusion -- References -- Implementing and Evaluating A Gaussian Mixture Framework for Identifying Gene Function from TnSeq Data -- 1. Introduction -- 1.1. TnSeq Motivation and Background -- 1.2. Motivation and New Methods -- 2. Methods -- 2.1. TnSeq Experimental Data -- 2.2. Mixture framework -- 2.3. Classification methods -- 2.3.1. Novel method - EM -- 2.3.2. Current method - t-statistic -- 2.3.3. Bayesian hierarchical model -- 2.3.4. Data partitioning for the Bayesian model -- 2.4. Simulation -- 2.5. Real data -- 3. Results -- 3.1.1. Classification rate -- 3.1.2. False positive rate -- 3.1.3. Positive classification rate -- 3.1.4. Cross entropy -- 3.2. Simulation Results -- 3.3. Comparisons on real data -- 3.4. Software -- 4. Discussion -- References -- SNPs2ChIP: Latent Factors of ChIP-seq to infer functions of non-coding SNPs -- 1. Introduction -- 2. Results -- 2.1. SNPs2ChIP analysis framework overview -- 2.2. Batch normalization of heterogeneous epigenetic features -- 2.3. Latent factor discovery and their biological characterization -- 2.4. SNPs2ChIP identifies relevant functions of the non-coding genome -- 2.4.1. Genome-wide SNPs coverage of the reference datasets -- 2.4.2. Non-coding GWAS SNPs of systemic lupus erythematosus -- 2.4.3. ChIP-seq peaks for vitamin D receptors.
2.5. Robustness Analysis in the latent factor identification.
Altri titoli varianti Biocomputing 2019
Biocomputing 2019:Proceedings of the Pacific Symposium:Pacific Symposium on Biocomputing 2019
Record Nr. UNINA-9910349464803321
Altman Russ B  
World Scientific Publishing Co, 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biocomputing 2021 - Proceedings Of The Pacific Symposium
Biocomputing 2021 - Proceedings Of The Pacific Symposium
Autore Altman Russ B
Pubbl/distr/stampa World Scientific Publishing Co, 2020
Descrizione fisica 1 online resource (372 pages)
Altri autori (Persone) DunkerA. Keith <1943-> (Alan Keith)
HunterLawrence <1961->
RitchieMarylyn D
MurrayTiffany A
KleinTeri E
Soggetto non controllato Protein Interactions
Metabolomics
Biocomputing
Computational Genetics
Ontology
Computational Proteomics
Bioinformatics
ISBN 981-12-3270-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- ACHIEVING TRUSTWORTHY BIOMEDICAL DATA -- Session Introduction: Achieving Trustworthy Biomedical Data Solutions -- 1. Introduction -- 2. Preserving Privacy and Explaining Decisions of Artificial Intelligence -- 3. Sharing Genomic and Health Records -- 4. Deploying Digital Health Solutions -- 5. Crowdsourcing Healthcare -- 6. Considering the Bioethics -- 7. Anticipating the Future -- References -- Selection of Trustworthy Crowd Workers for Telemedical Diagnosis of Pediatric Autism Spectrum Disorder -- 1. Introduction -- 2. Methods -- 2.1. Clinically representative videos -- 2.2. Crowdsourcing task for Microworkers -- 2.3. Classifier to evaluate performance -- 2.4. Metrics evaluated -- 2.5. Prediction of crowd worker performance from metrics -- 3. Results -- 3.1. Correlation between metrics and probability of the correct class -- 3.2. Regression prediction of the mean probability of the correct class -- 4. Discussion and Future Work -- 5. Conclusion -- 6. Acknowledgments -- References -- Differential Privacy Protection Against Membership Inference Attack on Machine Learning for Genomic Data -- 1. Introduction -- 2. Related Work -- 3. Methods -- 3.1. Membership inference attack (MIA) -- 3.2. Di erential privacy (DP) -- 4. Experimental Setup -- 4.1. Dataset -- 4.2. Implementation of target models -- 4.3. Implementation of DP -- 4.4. Implementation of MIA -- 4.5. Evaluation metrics -- 5. Results -- 5.1. Vulnerability of target model against MIA without DP protection -- 5.2. Impact of privacy budget on the target model accuracy -- 5.3. E ectiveness of DP against MIA -- 5.4. E ect of model sparsity -- 6. Conclusion -- References -- Making Compassionate Use More Useful: Using Real-World Data, Real-World Evidence and Digital Twins to Supplement or Supplant Randomized Controlled Trials -- 1. Introduction.
1.1 Compassionate use -- 1.2 Compassionate use during the pandemic -- 1.3 What is an RCT? -- 1.3 EA data and NDAs -- 2. Real-World Information -- 2.1 Real-world data in trials -- 2.2 Real-world data and real-world evidence -- 2.2 Real-world limitations -- 3.0 Making RWD Work -- 3.1 Digital twins -- 4.0 Conclusions -- References -- ADVANCED METHODS FOR BIG DATA ANALYTICS IN WOMEN'S HEALTH -- Session Introduction: Advanced Methods for Big Data Analytics in Women's Health -- 1. Introduction -- 2. Session Summary -- 2.1. Full-length papers -- 3. Discussion -- References -- Intimate Partner Violence and Injury Prediction from Radiology Reports -- 1. Introduction -- 2. Related Work -- 2.1. Intimate partner violence -- 2.2. Clinical prediction -- 2.3. Natural language processing -- 3. Dataset -- 3.1. IPV patient selection -- 3.2. Control group selection -- 3.3. Injury labels -- 3.4. Data cleaning -- 3.5. Demographic data -- 4. Methodology -- 4.1. Experiment setup -- 4.2. Models -- 4.3. Evaluation -- 4.3.1. Prediction and predictive features -- 4.3.2. Error analysis -- 4.3.3. Report-program date gap -- 5. Results -- 5.1. IPV and injury prediction and predictive features -- 5.2. Error analysis -- 5.3. Report-program date gap -- 6. Discussion and conclusion -- References -- Not All C-sections Are the Same: Investigating Emergency vs. Elective C-section deliveries as an Adverse Pregnancy Outcome -- 1. Background and Significance -- 2. Methods -- 2.1. Dataset characteristics -- 2.2. Identification of delivery outcomes -- 2.2.1. Cesarean section deliveries -- 2.2.2. Preterm birth, stillbirth, and multiple birth deliveries -- 2.3. Integration of data from encounter records -- 2.4. Generalized regression models -- 3. Results -- 3.1. Utilization of cesarean section codes -- 3.2. Admission types recorded in encounter records.
3.3. Age distribution by delivery admit type -- 3.4. Number of deliveries by weekday and admit type -- 4. Generalized regression model -- 4.1. Surgical Incision Type for C-section and Effect on Emergency Admission -- 5. Discussion -- References -- Co-occurrence Patterns of Intimate Partner Violence -- 1. Introduction -- 2. Materials and Methods -- 2.1. Description of Data and Pre-Processing -- 2.2. Co-Occurrence of Violence Types -- 2.3. Co-Occurrence Network of Individual Violence Items -- 2.4. Radial Visualization -- 2.5. Clustering of Survivors and Identification of Subgroups -- 2.6. Health Problems and Trauma Symptoms -- 3. Results -- 4. Discussion -- 5. Acknowledgments -- References -- BIOCOMPUTING AND AI FOR INFECTIOUS DISEASE MODELLING AND THERAPEUTICS -- Session Introduction: AI for Infectious Disease Modelling and Therapeutics -- 1. Background -- 2. Introduction -- 3. Social Media and COVID-19 -- 4. Biomedical literature and COVID-19 plus neglected tropical diseases -- 5. Genomics and HCV -- 6. Protein intrinsically disordered regions and SARS-CoV-2 -- 7. Protein-protein interactions and SARS-CoV-2 -- References -- Characterization of Anonymous Physician Perspectives on COVID-19 Using Social Media Data -- 1. Introduction -- 2. Methods -- 2.1. Data Collection -- 2.2. N-gram Frequency Measures -- 2.3. Sentiment Analysis -- 3. Results -- 3.1. Frequency of terms and n-grams -- 3.2. Sentiment analysis -- 3.3. Sentiments of tweets containing specific terms -- 4. Discussion and Conclusion -- 5. Acknowledgments -- References -- Semantic Changepoint Detection for Finding Potentially Novel Research Publications -- 1. Introduction -- 2. Methods -- 2.1. Data collection and general procedures -- 2.2. Title and abstract entropies -- 2.3. Bayesian changepoint analysis -- 2.4. Differential word clouds -- 2.5. Title and abstract embeddings.
2.6. Semantic novelty -- 2.6.1. Strategy T1: Novel paper detection based on semantic distance -- 2.6.2. Strategy T2: Detection of novel papers that may constitute a trend -- 2.6.3. Strategy Y1: Detection of a group of novel papers based on their mean vector -- 2.6.4. Strategy Y2: Proportion of novel papers -- 3. Results and Discussion -- 4. Conclusions -- 5. Supplementary Information -- 6. Acknowledgements -- References -- TreeFix-TP: Phylogenetic Error-Correction for Infectious Disease Transmission Network Inference -- 1. Background -- 2. Methods -- 2.1. Minimizing inter-host transmissions -- 2.2. Description of TreeFix-TP -- 2.3. Evaluation using simulated data sets -- 2.3.1. Data set generation -- 2.3.2. Evaluating reconstruction accuracy -- 3. Results -- 3.1. Phylogenetic error correction results -- 3.2. Source recovery in HCV outbreaks -- 3.3. Running time and scalability -- 4. Discussion and Conclusions -- Acknowledgments -- Authors' Contributions -- Supplementary Material -- References -- SARS-CoV-2 Drug Discovery based on Intrinsically Disordered Regions -- 1. Introduction -- 2. Methods -- 2.1. Molecular docking -- 2.1.1. Data collection -- 2.1.2. Data preprocessing -- 2.1.3. Target file generation -- 2.1.4. Flexible docking -- 2.1.5. Ensemble docking -- 2.2. Statistical model -- 2.2.1. Chemprop -- 2.2.2. Data and training -- 3. Results -- 3.1. Interaction modelling -- 3.2. Activity prediction -- 4. Conclusion -- 5. Acknowledgements -- References -- Feasibility of the Vaccine Development for SARS-CoV-2 and Other Viruses Using the Shell Disorder Analysis -- 1. Introduction -- 1.1. SARS-COV-2 Vaccine -- 1.2. Shell disorder analysis of HIV and other viruses -- 1.3. Spinoff projects including coronaviruses: Shell disorder and modes of transmission -- 1.4. Yet another spinoff: Correlations between the inner shell disorder and virulence.
2. Results -- 2.1. Clustering of CoV based mainly on NPID -- 2.2 Outer shell disorder is an indicator for the presence or absence of effective vaccines -- 2.3. A disordered outer shell provides an immune evasion tactic: Viral shapeshifting -- 2.4. SARS-CoV-2: Exceptionally hard shell (low MPID) associated with burrowing animals and buried feces -- 2.5. Behavior of the animal hosts matters in the evolutions of the viruses: EIAV vs. HIV -- 2.6. Feasibility of developing attenuated vaccine strains for SARS-CoV-2 -- 3. Discussion -- 3.1. Links between respiratory transmission, N (Inner shell) disorder, and virulence: Viral load in body fluids vs. vital organs -- 3.2. Greater disorder in the inner shell proteins provide means for the more efficient replication of viral particles -- 3.3 Two modes of immune evasion: "Trojan Horse" (inner shell disorder) and "viral shapeshifting" (outer shell disorder) -- 3.4. FIV, HIV-1 and HIV-2: Similarities and differences -- 3.5. FIV vaccine enigma: Questionable efficacy -- 4. Conclusions -- 4.1. Development of the SARS-CoV-2 vaccine is feasible and vaccine strains can be found in nature -- 5. Materials and Methods -- References -- Protein Sequence Models for Prediction and Comparative Analysis of the SARS-CoV-2−Human Interactome -- 1. Introduction -- 2. Methods -- 2.1. Generalized Additive Models with interactions (GA2M) -- 3. Gold Standard Interaction Datasets -- 3.1. Dealing with the lack of negative examples -- 3.2. Features -- 4. Experiments -- 4.1. TAPE: Transformer based model for protein sequences -- 5. Results -- 5.1. Prediction performance and validation of predicted interactions -- 5.2. Enrichment analysis of predicted human binding partners -- 6. Discussion -- 6.1. Visualizing the virus-human interactions -- 6.2. Highly ranked sequence features -- 6.3. Structural analysis -- 7. Prior Work -- 8. Conclusion.
9. Acknowledgements.
Altri titoli varianti Biocomputing 2021
Record Nr. UNINA-9910433229003321
Altman Russ B  
World Scientific Publishing Co, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 9th European Conference, EvoBIO 2011, Torino, Italy, April 27-29, 2011, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 9th European Conference, EvoBIO 2011, Torino, Italy, April 27-29, 2011, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Edizione [1st ed. 2011.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Descrizione fisica 1 online resource (X, 183 p.)
Disciplina 570.285
Collana Theoretical Computer Science and General Issues
Soggetto topico Bioinformatics
Algorithms
Database management
Artificial intelligence
Computer science
Artificial intelligence—Data processing
Computational and Systems Biology
Database Management
Artificial Intelligence
Theory of Computation
Data Science
ISBN 3-642-20389-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996465549603316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 8th European Conference, EvoBIO 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 8th European Conference, EvoBIO 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Edizione [1st ed. 2010.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Descrizione fisica 1 online resource (XII, 249 p. 63 illus.)
Disciplina 006.3
Collana Theoretical Computer Science and General Issues
Soggetto topico Bioinformatics
Algorithms
Database management
Artificial intelligence
Computer science
Artificial intelligence—Data processing
Computational and Systems Biology
Database Management
Artificial Intelligence
Theory of Computation
Data Science
ISBN 1-280-38605-3
9786613563972
3-642-12211-6
Classificazione BIO 110f
DAT 708f
MAT 919f
SS 4800
WC 7700
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Variable Genetic Operator Search for the Molecular Docking Problem -- Variable Genetic Operator Search for the Molecular Docking Problem -- Role of Centrality in Network-Based Prioritization of Disease Genes -- Parallel Multi-Objective Approaches for Inferring Phylogenies -- An Evolutionary Model Based on Hill-Climbing Search Operators for Protein Structure Prediction -- Finding Gapped Motifs by a Novel Evolutionary Algorithm -- Top-Down Induction of Phylogenetic Trees -- A Model Free Method to Generate Human Genetics Datasets with Complex Gene-Disease Relationships -- Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci -- Grammatical Evolution Decision Trees for Detecting Gene-Gene Interactions -- Identification of Individualized Feature Combinations for Survival Prediction in Breast Cancer: A Comparison of Machine Learning Techniques -- Correlation–Based Scatter Search for Discovering Biclusters from Gene Expression Data -- A Local Search Appproach for Transmembrane Segment and Signal Peptide Discrimination -- A Replica Exchange Monte Carlo Algorithm for the Optimization of Secondary Structure Packing in Proteins -- Improving Multi-Relief for Detecting Specificity Residues from Multiple Sequence Alignments -- Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models -- Posters -- The Informative Extremes: Using Both Nearest and Farthest Individuals Can Improve Relief Algorithms in the Domain of Human Genetics -- Artificial Immune Systems for Epistasis Analysis in Human Genetics -- Metaheuristics for Strain Optimization Using Transcriptional Information Enriched Metabolic Models -- Using Rotation Forest for Protein Fold Prediction Problem: An Empirical Study -- Towards Automatic Detecting of Overlapping Genes - Clustered BLAST Analysis of Viral Genomes -- Investigating Populational Evolutionary Algorithms to Add Vertical Meaning in Phylogenetic Trees.
Record Nr. UNISA-996465893203316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 7th European Conference, EvoBIO 2009 Tübingen, Germany, April 15-17, 2009 Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics [[electronic resource] ] : 7th European Conference, EvoBIO 2009 Tübingen, Germany, April 15-17, 2009 Proceedings / / edited by Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Descrizione fisica 1 online resource (XII, 203 p.)
Disciplina 005.11
Collana Theoretical Computer Science and General Issues
Soggetto topico Computer programming
Computer science
Algorithms
Bioinformatics
Pattern recognition systems
Artificial intelligence
Programming Techniques
Theory of Computation
Computational and Systems Biology
Automated Pattern Recognition
Artificial Intelligence
ISBN 3-642-01184-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Association Study between Gene Expression and Multiple Relevant Phenotypes with Cluster Analysis -- Gaussian Graphical Models to Infer Putative Genes Involved in Nitrogen Catabolite Repression in S. cerevisiae -- Chronic Rat Toxicity Prediction of Chemical Compounds Using Kernel Machines -- Simulating Evolution of Drosophila Melanogaster Ebony Mutants Using a Genetic Algorithm -- Microarray Biclustering: A Novel Memetic Approach Based on the PISA Platform -- F-score with Pareto Front Analysis for Multiclass Gene Selection -- A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms -- Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks -- Optimal Use of Expert Knowledge in Ant Colony Optimization for the Analysis of Epistasis in Human Disease -- On the Efficiency of Local Search Methods for the Molecular Docking Problem -- A Comparison of Genetic Algorithms and Particle Swarm Optimization for Parameter Estimation in Stochastic Biochemical Systems -- Guidelines to Select Machine Learning Scheme for Classification of Biomedical Datasets -- Evolutionary Approaches for Strain Optimization Using Dynamic Models under a Metabolic Engineering Perspective -- Clustering Metagenome Short Reads Using Weighted Proteins -- A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony -- Validation of a Morphogenesis Model of Drosophila Early Development by a Multi-objective Evolutionary Optimization Algorithm -- Refining Genetic Algorithm Based Fuzzy Clustering through Supervised Learning for Unsupervised Cancer Classification.
Record Nr. UNISA-996466012203316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Evolutionary computation, machine learning and data mining in bioinformatics : 7th European conference, EvoBIO 2009, Tubingen, Germany, April 15-17, 2009 : proceedings / / Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini (eds.)
Evolutionary computation, machine learning and data mining in bioinformatics : 7th European conference, EvoBIO 2009, Tubingen, Germany, April 15-17, 2009 : proceedings / / Clara Pizzuti, Marylyn D. Ritchie, Mario Giacobini (eds.)
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, 2009
Descrizione fisica 1 online resource (XII, 203 p.)
Disciplina 005.11
Altri autori (Persone) GiacobiniMario
PizzutiClara
RitchieMarylyn D
Collana Lecture notes in computer science
Soggetto topico Artificial intelligence - Biological applications
Bioinformatics
Computational biology
Data mining
Evolutionary computation
ISBN 3-642-01184-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Association Study between Gene Expression and Multiple Relevant Phenotypes with Cluster Analysis -- Gaussian Graphical Models to Infer Putative Genes Involved in Nitrogen Catabolite Repression in S. cerevisiae -- Chronic Rat Toxicity Prediction of Chemical Compounds Using Kernel Machines -- Simulating Evolution of Drosophila Melanogaster Ebony Mutants Using a Genetic Algorithm -- Microarray Biclustering: A Novel Memetic Approach Based on the PISA Platform -- F-score with Pareto Front Analysis for Multiclass Gene Selection -- A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms -- Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks -- Optimal Use of Expert Knowledge in Ant Colony Optimization for the Analysis of Epistasis in Human Disease -- On the Efficiency of Local Search Methods for the Molecular Docking Problem -- A Comparison of Genetic Algorithms and Particle Swarm Optimization for Parameter Estimation in Stochastic Biochemical Systems -- Guidelines to Select Machine Learning Scheme for Classification of Biomedical Datasets -- Evolutionary Approaches for Strain Optimization Using Dynamic Models under a Metabolic Engineering Perspective -- Clustering Metagenome Short Reads Using Weighted Proteins -- A Memetic Algorithm for Phylogenetic Reconstruction with Maximum Parsimony -- Validation of a Morphogenesis Model of Drosophila Early Development by a Multi-objective Evolutionary Optimization Algorithm -- Refining Genetic Algorithm Based Fuzzy Clustering through Supervised Learning for Unsupervised Cancer Classification.
Record Nr. UNINA-9910483734703321
Berlin ; ; New York, : Springer, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic Analysis of Complex Disease
Genetic Analysis of Complex Disease
Autore Scott William K
Edizione [3rd ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2021
Descrizione fisica 1 online resource (339 pages)
Disciplina 616.042
Altri autori (Persone) RitchieMarylyn D
Soggetto genere / forma Electronic books.
ISBN 1-119-10407-6
1-119-10408-4
1-119-10410-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555033803321
Scott William K  
Newark : , : John Wiley & Sons, Incorporated, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic analysis of complex diseases / / edited by William K. Scott and Marylyn D. Ritchie
Genetic analysis of complex diseases / / edited by William K. Scott and Marylyn D. Ritchie
Edizione [3rd ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (339 pages)
Disciplina 616.042
Altri autori (Persone) RitchieMarylyn D
Soggetto topico Genetics
Genetic disorders in children
ISBN 1-119-10407-6
1-119-10408-4
1-119-10410-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Designing A Study For Identifying Genes In Complex Traits / William K. Scott, Marylyn D. Ritchie, Jonathan L. Haines, and Margaret A. Pericak-Vance -- Basic Concepts In Genetics / Kayla Fourzali, Abigail Deppen, and Elizabeth Heise -- Defining Disease Phenotypes / C. Hung and O. Bodamer -- Determining The Genetic Component of A Disease / Allison Ashley Koch and Evadnie Rampersaud -- Study Design For Genetic Studies / Dana C Crawford and Logan Dumitrescu -- Responsible Conduct of Research In Genetic Studies / Susan Estabrooks Hahn, Adam Buchanan, and Susan H. Blanton -- Linkage Analysis / Susan Blanton -- Data Management / Stephen D. Turner and William S. Bush -- Linkage Disequilibrium and Association Analysis / Eden R. Martin and Ren-Hua Chung -- Genome-Wide Association Studies / Jacob McCauley, Yogasudha Veturi, Shefali Setia Verma, and Marylyn D. Ritchie -- Bioinformatics of Human Genetic Disease Studies / Dale J. Hedges -- Complex Genetic Interactions / Data Mining/ Dimensionality Reduction -- William S. Bush and Stephen D. Turner -- Sample Size, Power, and Data Simulation / Sarah A. Pendergrass, Yi-ju Li, Susan Shao, Marylyn D. Ritchie.
Record Nr. UNINA-9910830650503321
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetic analysis of complex diseases / / edited by William K. Scott and Marylyn D. Ritchie
Genetic analysis of complex diseases / / edited by William K. Scott and Marylyn D. Ritchie
Edizione [3rd ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (339 pages)
Disciplina 616.042
Altri autori (Persone) RitchieMarylyn D
Soggetto topico Genetics
Genetic disorders in children
ISBN 1-119-10407-6
1-119-10408-4
1-119-10410-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Designing A Study For Identifying Genes In Complex Traits / William K. Scott, Marylyn D. Ritchie, Jonathan L. Haines, and Margaret A. Pericak-Vance -- Basic Concepts In Genetics / Kayla Fourzali, Abigail Deppen, and Elizabeth Heise -- Defining Disease Phenotypes / C. Hung and O. Bodamer -- Determining The Genetic Component of A Disease / Allison Ashley Koch and Evadnie Rampersaud -- Study Design For Genetic Studies / Dana C Crawford and Logan Dumitrescu -- Responsible Conduct of Research In Genetic Studies / Susan Estabrooks Hahn, Adam Buchanan, and Susan H. Blanton -- Linkage Analysis / Susan Blanton -- Data Management / Stephen D. Turner and William S. Bush -- Linkage Disequilibrium and Association Analysis / Eden R. Martin and Ren-Hua Chung -- Genome-Wide Association Studies / Jacob McCauley, Yogasudha Veturi, Shefali Setia Verma, and Marylyn D. Ritchie -- Bioinformatics of Human Genetic Disease Studies / Dale J. Hedges -- Complex Genetic Interactions / Data Mining/ Dimensionality Reduction -- William S. Bush and Stephen D. Turner -- Sample Size, Power, and Data Simulation / Sarah A. Pendergrass, Yi-ju Li, Susan Shao, Marylyn D. Ritchie.
Record Nr. UNINA-9910877326903321
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui