top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biorefinery of inorganics : recovering mineral nutrients from biomass and organic waste / / edited by Erik Meers [et al.]
Biorefinery of inorganics : recovering mineral nutrients from biomass and organic waste / / edited by Erik Meers [et al.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2020]
Descrizione fisica 1 online resource (xxviii, 440 pages) : diagrams
Disciplina 631.869
Collana Wiley series in renewable resources
Soggetto topico Sewage - Purification - Nutrient removal
Factory and trade waste - Purification
Nutrient pollution of water
ISBN 1-118-92147-X
1-118-92146-1
1-118-92148-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Part I Global Nutrient Flows and Cycling in Food Systems -- Chapter 1 Global Nutrient Flows and Cycling in Food Systems -- 1.1 Introduction -- 1.2 Primary and Secondary Driving Forces of Nutrient Cycling -- 1.3 Anthropogenic Influences on Nutrient Cycling -- 1.4 The Global Nitrogen Cycle -- 1.5 The Global Phosphorus Cycle -- 1.6 Changes in Fertilizer Use During the Last 50 Years -- 1.7 Changes in Harvested Crop Products and in Crop Residues During the Last 50 Years -- 1.8 Changes in the Amounts of N and P in Animal Products and Manures -- 1.9 Changes in the Trade of Food and Feed -- 1.10 Changes in Nutrient Balances -- 1.11 General Discussion -- 1.11 References -- Part II The Role of Policy Frameworks in the Transition Toward Nutrient Recycling -- Chapter 2.1 Toward a Framework that Stimulates Mineral Recovery in Europe -- 2.1.1 The Importance of Managing Organic Residues -- 2.1.2 The Rise of Nutrient and Carbon Recycling -- 2.1.3 The European Framework for Nutrient Recovery and Reuse (NRR) -- 2.1.4 EU Waste Legislation -- 2.1.5 Moving from Waste to Product Legislation and the Interplay with Other EU Legislation -- 2.1.6 Complying with Existing Environmental and Health & -- Safety Legislation -- 2.1.7 Conclusion -- 2.1.7 References -- Chapter 2.2 Livestock Nutrient Management Policy Framework in the United States -- 2.2.1 Introduction -- 2.2.2 The Legal‐Regulatory Framework for Manure Nutrient Management -- 2.2.3 Current Manure‐Management Practices -- 2.2.4 Public Investments for Improvement of Manure‐Management Practices -- 2.2.5 The Role of the Judicial Process and Consumer‐Driven Preferences -- 2.2.6 Limitations of the Current Framework -- 2.2.7 Conclusion -- 2.2.7 References.
Chapter 2.3 Biomass Nutrient Management in China: The Impact of Rapid Growth and Energy Demand -- 2.3.1 Introduction -- 2.3.2 The Impact of Economic Liberalization Policy in the 1980s and 1990s -- 2.3.3 Environmental Protection Efforts and Unintended Consequences -- 2.3.4 Renewable Energy Policy and Its Impact on Biomass Management -- 2.3.5 Conclusion -- 2.3.5 References -- Chapter 2.4 Nutrient Cycling in Agriculture in China -- 2.4.1 Introduction -- 2.4.2 Nutrient Cycling in China -- 2.4.3 Effects on the Environment -- 2.4.4 Nutrient Management Policies -- 2.4.5 Future Perspectives -- 2.4.5.1 National Nutrient Management Strategy -- 2.4.5.2 Challenges of Technology Transfer in Manure Management -- 2.4.5.3 Environmental Protection -- 2.4.6 Conclusion -- 2.4.6 References -- Part III State of the Art and Emerging Technologies in Nutrient Recovery from Organic Residues -- Chapter 3.1 Manure as a Resource for Energy and Nutrients -- 3.1.1 Introduction -- 3.1.2 Energy Production from Animal Manure -- 3.1.2.1 Anaerobic Digestion -- 3.1.2.2 Thermochemical Conversion Process -- 3.1.3 Nutrient Recovery Techniques -- 3.1.3.1 Phosphorus Precipitation -- 3.1.3.2 Ammonia Stripping and Scrubbing -- 3.1.3.3 Membrane Filtration -- 3.1.3.4 Phosphorus Extraction from Ashes -- 3.1.4 Conclusion -- 3.1.4 References -- Chapter 3.2 Municipal Wastewater as a Source for Phosphorus -- 3.2.1 Introduction -- 3.2.2 Phosphorus Removal from Wastewater -- 3.2.3 Sludge Management -- 3.2.4 Current State of P Recovery Technologies -- 3.2.4.1 Phosphorus Salts Precipitation -- 3.2.4.2 Phosphorus Recovery Via Wet‐Chemical Processes -- 3.2.4.3 Phosphorus Recovery Via Thermal Processes -- 3.2.4.4 Choice of Phosphorus Technologies Today -- 3.2.5 Future P Recovery Technologies -- 3.2.5.1 Phosphorus Salt Recovery Upgrades -- 3.2.5.2 Thermal Processes.
3.2.5.3 Natural Process for the Recovery of Phosphorus -- 3.2.6 Conclusion -- 3.2.6 References -- Chapter 3.3 Ammonia Stripping and Scrubbing for Mineral Nitrogen Recovery -- 3.3.1 Introduction -- 3.3.2 Ammonia Stripping and Scrubbing from Biobased Resources -- 3.3.2.1 Acid Scrubbing of Exhaust Air -- 3.3.2.2 Stripping and Scrubbing from Manure -- 3.3.2.3 Stripping and Scrubbing from Anaerobic Digestate -- 3.3.2.4 Manure and Digestate Processing by Evaporation -- 3.3.3 Alternative Scrubbing Agents -- 3.3.3.1 Organic Acids -- 3.3.3.2 Nitric Acid -- 3.3.3.3 Gypsum -- 3.3.4 Industrial Cases of Stripping and Scrubbing -- 3.3.4.1 Waste Air Cleaning Via Acid Scrubbing -- 3.3.4.2 Raw Digestate Processing Via Stripping and Scrubbing and Recirculation of the N‐Depleted Digestate -- 3.3.4.3 Liquid Fraction Digestate Processing Via Stripping and Scrubbing -- 3.3.4.4 Liquid Fraction of Digestate Processing Via Membrane Separation and Stripping and Scrubbing -- 3.3.5 Product Quality of Ammonium Sulfate and Ammonium Nitrate -- 3.3.5.1 Ammonium Sulfate -- 3.3.5.2 Ammonium Nitrate -- 3.3.6 Conclusion -- 3.3.6 References -- Part IV Inspiring Cases in Nutrient Recovery Processes -- Chapter 4.1 Struvite Recovery from Domestic Wastewater -- 4.1.1 Introduction -- 4.1.2 Process Description -- 4.1.3 Analyses and Tests -- 4.1.3.1 Mass Balance -- 4.1.3.2 Struvite Purity -- 4.1.4 Operational Benefits -- 4.1.4.1 Enhanced Dewaterability -- 4.1.4.2 Enhanced Recovery Potential -- 4.1.4.3 Reduced Scaling -- 4.1.4.4 Reduced Phosphorus Content in the Sludge Pellets -- 4.1.4.5 Reduced P and N Load in the Rejection Water -- 4.1.5 Economic Evaluation -- 4.1.6 Future Challenges -- 4.1.6.1 In‐Depth Quality Screening -- 4.1.6.2 Improved Crystal Separation -- 4.1.7 Conclusion -- 4.1.7 References -- Chapter 4.2 Mineral Concentrates from Membrane Filtration -- 4.2.1 Introduction.
4.2.2 Production of Mineral Concentrates -- 4.2.2.1 General Set‐up -- 4.2.2.2 Solid/Liquid Separation -- 4.2.2.3 Pre‐treatment of the Liquid Fraction (Effluent from Mechanical Separation) -- 4.2.2.4 Reverse Osmosis -- 4.2.3 Mass Balance -- 4.2.4 Composition of Raw Slurry, Solid Fraction, and RO‐Concentrate -- 4.2.4.1 Raw Slurry -- 4.2.4.2 Solid Fraction -- 4.2.4.3 RO‐Concentrate -- 4.2.5 Quality Requirements -- 4.2.6 Conclusion -- 4.2.6 References -- Chapter 4.3 Pyrolysis of Agro‐Digestate: Nutrient Distribution -- 4.3.1 Introduction -- 4.3.1.1 Background -- 4.3.1.2 The Pyrolysis Process -- 4.3.1.3 Pyrolysis of Agro‐Digestate -- 4.3.2 Investigation -- 4.3.2.1 Materials and Methods -- 4.3.2.2 Product Analysis and Evaluation -- 4.3.3 Results and Discussion -- 4.3.3.1 Fast Pyrolysis: Influence of Temperature -- 4.3.3.2 Influence of Heating Rate -- 4.3.4 Conclusion -- 4.3.4 Acknowledgment -- 4.3.4 References -- Chapter 4.4 Agronomic Effectivity of Hydrated Poultry Litter Ash -- 4.4.1 Introduction -- 4.4.2 Energy Production Process -- 4.4.3 Composition of HPLA -- 4.4.4 Agronomic Effectivity of HPLA -- 4.4.5 Phosphorus -- 4.4.6 Potassium -- 4.4.7 Rye Grass -- 4.4.8 Acid‐Neutralizing Value -- 4.4.9 Efficacy -- 4.4.10 Conclusion -- 4.4.10 References -- Chapter 4.5 Bioregenerative Nutrient Recovery from Human Urine: Closing the Loop in Turning Waste into Wealth -- 4.5.1 Introduction -- 4.5.2 Composition and Fertilizer Potential -- 4.5.3 State of the Art of Regenerative Practices -- 4.5.3.1 HU in Agriculture -- 4.5.3.2 HU in Aquaculture -- 4.5.4 Cautions, Concerns, and Constraints -- 4.5.5 Conclusion -- 4.5.5 References -- Chapter 4.6 Pilot‐Scale Investigations on Phosphorus Recovery from Municipal Wastewater -- 4.6.1 Introduction -- 4.6.2 European and National Incentives to Act on Market Drivers -- 4.6.3 Pilot Investigations.
4.6.3.1 Acid Leaching Solutions to Recover Phosphorus from Sewage Sludge Ashes -- 4.6.3.2 Pilot Demonstration of Thermal Solutions to Recover Phosphorus from Sewage Sludge: The EuPhoRe® Process -- 4.6.3.3 Demonstration of struvite solution with biological acidification to increase the P recovery from sewage sludge -- 4.6.3.4 Innovative Technical Solutions to Recover P from Small‐Scale WWTPs: Downscaling Struvite Precipitation for Rural Areas -- 4.6.3.5 Algal‐Based Solutions to Recover Phosphorus from Small‐Scale WWTPs: A Promising Approach for Remote, Rural, and Island Areas -- 4.6.3 References -- Part V Agricultural and Environmental Performance of Biobased Fertilizer Substitutes: Overview of Field Assessments -- Chapter 5.1 Fertilizer Replacement Value: Linking Organic Residues to Mineral Fertilizers -- 5.1.1 Introduction -- 5.1.2 Nutrient Pathways from Land Application to Crop Uptake -- 5.1.2.1 Nitrogen -- 5.1.2.2 Phosphorus -- 5.1.3 Fertilizer Replacement Value -- 5.1.3.1 Crop Response -- 5.1.3.2 Response Period -- 5.1.4 Reference Mineral Fertilizer -- 5.1.4.1 Crop and Soil Type -- 5.1.4.2 Application Time and Method -- 5.1.4.3 Assessment Method -- 5.1.5 Fertilizer Replacement Values in Fertilizer Plans -- 5.1.6 Conclusion -- 5.1.6 References -- Chapter 5.2 Anaerobic Digestion and Renewable Fertilizers: Case Studies in Northern Italy -- 5.2.1 Introduction -- 5.2.2 Anaerobic Digestion as a Tool to Correctly Manage Animal Slurries -- 5.2.3 Chemical and Physical Modification of Organic Matter and Nutrients during Anaerobic Digestion -- 5.2.4 From Digestate to Renewable Fertilizers -- 5.2.4.1 N‐Fertilizer from the LF of Digestate -- 5.2.4.2 Organic Fertilizer from the SF of Digestate -- 5.2.5 Environmental Safety and Health Protection Using Digestate -- 5.2.6 Conclusion -- 5.2.6 References.
Chapter 5.3 Nutrients and Plant Hormones in Anaerobic Digestates: Characterization and Land Application.
Record Nr. UNINA-9910555065103321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biorefinery of inorganics : recovering mineral nutrients from biomass and organic waste / / edited by Erik Meers [et al.]
Biorefinery of inorganics : recovering mineral nutrients from biomass and organic waste / / edited by Erik Meers [et al.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2020]
Descrizione fisica 1 online resource (xxviii, 440 pages) : diagrams
Disciplina 631.869
Collana Wiley series in renewable resources
Soggetto topico Sewage - Purification - Nutrient removal
Factory and trade waste - Purification
Nutrient pollution of water
ISBN 1-118-92147-X
1-118-92146-1
1-118-92148-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Part I Global Nutrient Flows and Cycling in Food Systems -- Chapter 1 Global Nutrient Flows and Cycling in Food Systems -- 1.1 Introduction -- 1.2 Primary and Secondary Driving Forces of Nutrient Cycling -- 1.3 Anthropogenic Influences on Nutrient Cycling -- 1.4 The Global Nitrogen Cycle -- 1.5 The Global Phosphorus Cycle -- 1.6 Changes in Fertilizer Use During the Last 50 Years -- 1.7 Changes in Harvested Crop Products and in Crop Residues During the Last 50 Years -- 1.8 Changes in the Amounts of N and P in Animal Products and Manures -- 1.9 Changes in the Trade of Food and Feed -- 1.10 Changes in Nutrient Balances -- 1.11 General Discussion -- 1.11 References -- Part II The Role of Policy Frameworks in the Transition Toward Nutrient Recycling -- Chapter 2.1 Toward a Framework that Stimulates Mineral Recovery in Europe -- 2.1.1 The Importance of Managing Organic Residues -- 2.1.2 The Rise of Nutrient and Carbon Recycling -- 2.1.3 The European Framework for Nutrient Recovery and Reuse (NRR) -- 2.1.4 EU Waste Legislation -- 2.1.5 Moving from Waste to Product Legislation and the Interplay with Other EU Legislation -- 2.1.6 Complying with Existing Environmental and Health & -- Safety Legislation -- 2.1.7 Conclusion -- 2.1.7 References -- Chapter 2.2 Livestock Nutrient Management Policy Framework in the United States -- 2.2.1 Introduction -- 2.2.2 The Legal‐Regulatory Framework for Manure Nutrient Management -- 2.2.3 Current Manure‐Management Practices -- 2.2.4 Public Investments for Improvement of Manure‐Management Practices -- 2.2.5 The Role of the Judicial Process and Consumer‐Driven Preferences -- 2.2.6 Limitations of the Current Framework -- 2.2.7 Conclusion -- 2.2.7 References.
Chapter 2.3 Biomass Nutrient Management in China: The Impact of Rapid Growth and Energy Demand -- 2.3.1 Introduction -- 2.3.2 The Impact of Economic Liberalization Policy in the 1980s and 1990s -- 2.3.3 Environmental Protection Efforts and Unintended Consequences -- 2.3.4 Renewable Energy Policy and Its Impact on Biomass Management -- 2.3.5 Conclusion -- 2.3.5 References -- Chapter 2.4 Nutrient Cycling in Agriculture in China -- 2.4.1 Introduction -- 2.4.2 Nutrient Cycling in China -- 2.4.3 Effects on the Environment -- 2.4.4 Nutrient Management Policies -- 2.4.5 Future Perspectives -- 2.4.5.1 National Nutrient Management Strategy -- 2.4.5.2 Challenges of Technology Transfer in Manure Management -- 2.4.5.3 Environmental Protection -- 2.4.6 Conclusion -- 2.4.6 References -- Part III State of the Art and Emerging Technologies in Nutrient Recovery from Organic Residues -- Chapter 3.1 Manure as a Resource for Energy and Nutrients -- 3.1.1 Introduction -- 3.1.2 Energy Production from Animal Manure -- 3.1.2.1 Anaerobic Digestion -- 3.1.2.2 Thermochemical Conversion Process -- 3.1.3 Nutrient Recovery Techniques -- 3.1.3.1 Phosphorus Precipitation -- 3.1.3.2 Ammonia Stripping and Scrubbing -- 3.1.3.3 Membrane Filtration -- 3.1.3.4 Phosphorus Extraction from Ashes -- 3.1.4 Conclusion -- 3.1.4 References -- Chapter 3.2 Municipal Wastewater as a Source for Phosphorus -- 3.2.1 Introduction -- 3.2.2 Phosphorus Removal from Wastewater -- 3.2.3 Sludge Management -- 3.2.4 Current State of P Recovery Technologies -- 3.2.4.1 Phosphorus Salts Precipitation -- 3.2.4.2 Phosphorus Recovery Via Wet‐Chemical Processes -- 3.2.4.3 Phosphorus Recovery Via Thermal Processes -- 3.2.4.4 Choice of Phosphorus Technologies Today -- 3.2.5 Future P Recovery Technologies -- 3.2.5.1 Phosphorus Salt Recovery Upgrades -- 3.2.5.2 Thermal Processes.
3.2.5.3 Natural Process for the Recovery of Phosphorus -- 3.2.6 Conclusion -- 3.2.6 References -- Chapter 3.3 Ammonia Stripping and Scrubbing for Mineral Nitrogen Recovery -- 3.3.1 Introduction -- 3.3.2 Ammonia Stripping and Scrubbing from Biobased Resources -- 3.3.2.1 Acid Scrubbing of Exhaust Air -- 3.3.2.2 Stripping and Scrubbing from Manure -- 3.3.2.3 Stripping and Scrubbing from Anaerobic Digestate -- 3.3.2.4 Manure and Digestate Processing by Evaporation -- 3.3.3 Alternative Scrubbing Agents -- 3.3.3.1 Organic Acids -- 3.3.3.2 Nitric Acid -- 3.3.3.3 Gypsum -- 3.3.4 Industrial Cases of Stripping and Scrubbing -- 3.3.4.1 Waste Air Cleaning Via Acid Scrubbing -- 3.3.4.2 Raw Digestate Processing Via Stripping and Scrubbing and Recirculation of the N‐Depleted Digestate -- 3.3.4.3 Liquid Fraction Digestate Processing Via Stripping and Scrubbing -- 3.3.4.4 Liquid Fraction of Digestate Processing Via Membrane Separation and Stripping and Scrubbing -- 3.3.5 Product Quality of Ammonium Sulfate and Ammonium Nitrate -- 3.3.5.1 Ammonium Sulfate -- 3.3.5.2 Ammonium Nitrate -- 3.3.6 Conclusion -- 3.3.6 References -- Part IV Inspiring Cases in Nutrient Recovery Processes -- Chapter 4.1 Struvite Recovery from Domestic Wastewater -- 4.1.1 Introduction -- 4.1.2 Process Description -- 4.1.3 Analyses and Tests -- 4.1.3.1 Mass Balance -- 4.1.3.2 Struvite Purity -- 4.1.4 Operational Benefits -- 4.1.4.1 Enhanced Dewaterability -- 4.1.4.2 Enhanced Recovery Potential -- 4.1.4.3 Reduced Scaling -- 4.1.4.4 Reduced Phosphorus Content in the Sludge Pellets -- 4.1.4.5 Reduced P and N Load in the Rejection Water -- 4.1.5 Economic Evaluation -- 4.1.6 Future Challenges -- 4.1.6.1 In‐Depth Quality Screening -- 4.1.6.2 Improved Crystal Separation -- 4.1.7 Conclusion -- 4.1.7 References -- Chapter 4.2 Mineral Concentrates from Membrane Filtration -- 4.2.1 Introduction.
4.2.2 Production of Mineral Concentrates -- 4.2.2.1 General Set‐up -- 4.2.2.2 Solid/Liquid Separation -- 4.2.2.3 Pre‐treatment of the Liquid Fraction (Effluent from Mechanical Separation) -- 4.2.2.4 Reverse Osmosis -- 4.2.3 Mass Balance -- 4.2.4 Composition of Raw Slurry, Solid Fraction, and RO‐Concentrate -- 4.2.4.1 Raw Slurry -- 4.2.4.2 Solid Fraction -- 4.2.4.3 RO‐Concentrate -- 4.2.5 Quality Requirements -- 4.2.6 Conclusion -- 4.2.6 References -- Chapter 4.3 Pyrolysis of Agro‐Digestate: Nutrient Distribution -- 4.3.1 Introduction -- 4.3.1.1 Background -- 4.3.1.2 The Pyrolysis Process -- 4.3.1.3 Pyrolysis of Agro‐Digestate -- 4.3.2 Investigation -- 4.3.2.1 Materials and Methods -- 4.3.2.2 Product Analysis and Evaluation -- 4.3.3 Results and Discussion -- 4.3.3.1 Fast Pyrolysis: Influence of Temperature -- 4.3.3.2 Influence of Heating Rate -- 4.3.4 Conclusion -- 4.3.4 Acknowledgment -- 4.3.4 References -- Chapter 4.4 Agronomic Effectivity of Hydrated Poultry Litter Ash -- 4.4.1 Introduction -- 4.4.2 Energy Production Process -- 4.4.3 Composition of HPLA -- 4.4.4 Agronomic Effectivity of HPLA -- 4.4.5 Phosphorus -- 4.4.6 Potassium -- 4.4.7 Rye Grass -- 4.4.8 Acid‐Neutralizing Value -- 4.4.9 Efficacy -- 4.4.10 Conclusion -- 4.4.10 References -- Chapter 4.5 Bioregenerative Nutrient Recovery from Human Urine: Closing the Loop in Turning Waste into Wealth -- 4.5.1 Introduction -- 4.5.2 Composition and Fertilizer Potential -- 4.5.3 State of the Art of Regenerative Practices -- 4.5.3.1 HU in Agriculture -- 4.5.3.2 HU in Aquaculture -- 4.5.4 Cautions, Concerns, and Constraints -- 4.5.5 Conclusion -- 4.5.5 References -- Chapter 4.6 Pilot‐Scale Investigations on Phosphorus Recovery from Municipal Wastewater -- 4.6.1 Introduction -- 4.6.2 European and National Incentives to Act on Market Drivers -- 4.6.3 Pilot Investigations.
4.6.3.1 Acid Leaching Solutions to Recover Phosphorus from Sewage Sludge Ashes -- 4.6.3.2 Pilot Demonstration of Thermal Solutions to Recover Phosphorus from Sewage Sludge: The EuPhoRe® Process -- 4.6.3.3 Demonstration of struvite solution with biological acidification to increase the P recovery from sewage sludge -- 4.6.3.4 Innovative Technical Solutions to Recover P from Small‐Scale WWTPs: Downscaling Struvite Precipitation for Rural Areas -- 4.6.3.5 Algal‐Based Solutions to Recover Phosphorus from Small‐Scale WWTPs: A Promising Approach for Remote, Rural, and Island Areas -- 4.6.3 References -- Part V Agricultural and Environmental Performance of Biobased Fertilizer Substitutes: Overview of Field Assessments -- Chapter 5.1 Fertilizer Replacement Value: Linking Organic Residues to Mineral Fertilizers -- 5.1.1 Introduction -- 5.1.2 Nutrient Pathways from Land Application to Crop Uptake -- 5.1.2.1 Nitrogen -- 5.1.2.2 Phosphorus -- 5.1.3 Fertilizer Replacement Value -- 5.1.3.1 Crop Response -- 5.1.3.2 Response Period -- 5.1.4 Reference Mineral Fertilizer -- 5.1.4.1 Crop and Soil Type -- 5.1.4.2 Application Time and Method -- 5.1.4.3 Assessment Method -- 5.1.5 Fertilizer Replacement Values in Fertilizer Plans -- 5.1.6 Conclusion -- 5.1.6 References -- Chapter 5.2 Anaerobic Digestion and Renewable Fertilizers: Case Studies in Northern Italy -- 5.2.1 Introduction -- 5.2.2 Anaerobic Digestion as a Tool to Correctly Manage Animal Slurries -- 5.2.3 Chemical and Physical Modification of Organic Matter and Nutrients during Anaerobic Digestion -- 5.2.4 From Digestate to Renewable Fertilizers -- 5.2.4.1 N‐Fertilizer from the LF of Digestate -- 5.2.4.2 Organic Fertilizer from the SF of Digestate -- 5.2.5 Environmental Safety and Health Protection Using Digestate -- 5.2.6 Conclusion -- 5.2.6 References.
Chapter 5.3 Nutrients and Plant Hormones in Anaerobic Digestates: Characterization and Land Application.
Record Nr. UNINA-9910810928003321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui