top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biocatalysis [[electronic resource] /] / A. S. Bommarius, B. R. Riebel
Biocatalysis [[electronic resource] /] / A. S. Bommarius, B. R. Riebel
Autore Bommarius A. S (Andreas Sebastian)
Pubbl/distr/stampa Weinheim ; ; Cambridge, : Wiley-VCH, c2004
Descrizione fisica 1 online resource (637 p.)
Disciplina 660.634
Altri autori (Persone) RiebelB. R (Bettina R.)
Soggetto topico Enzymes - Biotechnology
Biosynthesis
Catalysis
Soggetto genere / forma Electronic books.
ISBN 1-280-56086-X
9786610560868
3-527-60605-X
3-527-60236-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biocatalysis; Preface; Acknowledgments; Contents; 1 Introduction to Biocatalysis; 1.1 Overview: The Status of Biocatalysis at the Turn of the 21st Century; 1.1.1 State of Acceptance of Biocatalysis; 1.1.2 Current Advantages and Drawbacks of Biocatalysis; 1.1.2.1 Advantages of Biocatalysts; 1.1.2.2 Drawbacks of Current Biocatalysts; 1.2 Characteristics of Biocatalysis as a Technology; 1.2.1 Contributing Disciplines and Areas of Application; 1.2.2 Characteristics of Biocatalytic Transformations; 1.2.2.1 Comparison of Biocatalysis with other Kinds of Catalysis
1.2.3 Applications of Biocatalysis in Industry1.2.3.1 Chemical Industry of the Future: Environmentally Benign Manufacturing, Green Chemistry, Sustainable Development in the Future; 1.2.3.2 Enantiomerically Pure Drugs or Advanced Pharmaceutical Intermediates (APIs); 1.3 Current Penetration of Biocatalysis; 1.3.1 The Past: Historical Digest of Enzyme Catalysis; 1.3.2 The Present: Status of Biocatalytic Processes; 1.4 The Breadth of Biocatalysis; 1.4.1 Nomenclature of Enzymes; 1.4.2 Biocatalysis and Organic Chemistry, or "Do we Need to Forget our Organic Chemistry?"
2 Characterization of a (Bio-)catalyst2.1 Characterization of Enzyme Catalysis; 2.1.1 Basis of the Activity of Enzymes: What is Enzyme Catalysis?; 2.1.1.1 Enzyme Reaction in a Reaction Coordinate Diagram; 2.1.2 Development of Enzyme Kinetics from Binding and Catalysis; 2.2 Sources and Reasons for the Activity of Enzymes as Catalysts; 2.2.1 Chronology of the Most Important Theories of Enzyme Activity; 2.2.2 Origin of Enzymatic Activity: Derivation of the Kurz Equation; 2.2.3 Consequences of the Kurz Equation; 2.2.4 Efficiency of Enzyme Catalysis: Beyond Pauling's Postulate
2.3 Performance Criteria for Catalysts, Processes, and Process Routes2.3.1 Basic Performance Criteria for a Catalyst: Activity, Selectivity and Stability of Enzymes; 2.3.1.1 Activity; 2.3.1.2 Selectivity; 2.3.1.3 Stability; 2.3.2 Performance Criteria for the Process; 2.3.2.1 Product Yield; 2.3.2.2 (Bio)catalyst Productivity; 2.3.2.3 (Bio)catalyst Stability; 2.3.2.4 Reactor Productivity; 2.3.3 Links between Enzyme Reaction Performance Parameters; 2.3.3.1 Rate Acceleration; 2.3.3.2 Ratio between Catalytic Constant k(cat) and Deactivation Rate Constant k(d)
2.3.3.3 Relationship between Deactivation Rate Constant k(d) and Total Turnover Number TTN2.3.4 Performance Criteria for Process Schemes, Atom Economy, and Environmental Quotient; 3 Isolation and Preparation of Microorganisms; 3.1 Introduction; 3.2 Screening of New Enzyme Activities; 3.2.1 Growth Rates in Nature; 3.2.2 Methods in Microbial Ecology; 3.3 Strain Development; 3.3.1 Range of Industrial Products from Microorganisms; 3.3.2 Strain Improvement; 3.4 Extremophiles; 3.4.1 Extremophiles in Industry; 3.5 Rapid Screening of Biocatalysts; 4 Molecular Biology Tools for Biocatalysis
4.1 Molecular Biology Basics: DNA versus Protein Level
Record Nr. UNINA-9910146245703321
Bommarius A. S (Andreas Sebastian)  
Weinheim ; ; Cambridge, : Wiley-VCH, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biocatalysis [[electronic resource] /] / A. S. Bommarius, B. R. Riebel
Biocatalysis [[electronic resource] /] / A. S. Bommarius, B. R. Riebel
Autore Bommarius A. S (Andreas Sebastian)
Pubbl/distr/stampa Weinheim ; ; Cambridge, : Wiley-VCH, c2004
Descrizione fisica 1 online resource (637 p.)
Disciplina 660.634
Altri autori (Persone) RiebelB. R (Bettina R.)
Soggetto topico Enzymes - Biotechnology
Biosynthesis
Catalysis
ISBN 1-280-56086-X
9786610560868
3-527-60605-X
3-527-60236-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biocatalysis; Preface; Acknowledgments; Contents; 1 Introduction to Biocatalysis; 1.1 Overview: The Status of Biocatalysis at the Turn of the 21st Century; 1.1.1 State of Acceptance of Biocatalysis; 1.1.2 Current Advantages and Drawbacks of Biocatalysis; 1.1.2.1 Advantages of Biocatalysts; 1.1.2.2 Drawbacks of Current Biocatalysts; 1.2 Characteristics of Biocatalysis as a Technology; 1.2.1 Contributing Disciplines and Areas of Application; 1.2.2 Characteristics of Biocatalytic Transformations; 1.2.2.1 Comparison of Biocatalysis with other Kinds of Catalysis
1.2.3 Applications of Biocatalysis in Industry1.2.3.1 Chemical Industry of the Future: Environmentally Benign Manufacturing, Green Chemistry, Sustainable Development in the Future; 1.2.3.2 Enantiomerically Pure Drugs or Advanced Pharmaceutical Intermediates (APIs); 1.3 Current Penetration of Biocatalysis; 1.3.1 The Past: Historical Digest of Enzyme Catalysis; 1.3.2 The Present: Status of Biocatalytic Processes; 1.4 The Breadth of Biocatalysis; 1.4.1 Nomenclature of Enzymes; 1.4.2 Biocatalysis and Organic Chemistry, or "Do we Need to Forget our Organic Chemistry?"
2 Characterization of a (Bio-)catalyst2.1 Characterization of Enzyme Catalysis; 2.1.1 Basis of the Activity of Enzymes: What is Enzyme Catalysis?; 2.1.1.1 Enzyme Reaction in a Reaction Coordinate Diagram; 2.1.2 Development of Enzyme Kinetics from Binding and Catalysis; 2.2 Sources and Reasons for the Activity of Enzymes as Catalysts; 2.2.1 Chronology of the Most Important Theories of Enzyme Activity; 2.2.2 Origin of Enzymatic Activity: Derivation of the Kurz Equation; 2.2.3 Consequences of the Kurz Equation; 2.2.4 Efficiency of Enzyme Catalysis: Beyond Pauling's Postulate
2.3 Performance Criteria for Catalysts, Processes, and Process Routes2.3.1 Basic Performance Criteria for a Catalyst: Activity, Selectivity and Stability of Enzymes; 2.3.1.1 Activity; 2.3.1.2 Selectivity; 2.3.1.3 Stability; 2.3.2 Performance Criteria for the Process; 2.3.2.1 Product Yield; 2.3.2.2 (Bio)catalyst Productivity; 2.3.2.3 (Bio)catalyst Stability; 2.3.2.4 Reactor Productivity; 2.3.3 Links between Enzyme Reaction Performance Parameters; 2.3.3.1 Rate Acceleration; 2.3.3.2 Ratio between Catalytic Constant k(cat) and Deactivation Rate Constant k(d)
2.3.3.3 Relationship between Deactivation Rate Constant k(d) and Total Turnover Number TTN2.3.4 Performance Criteria for Process Schemes, Atom Economy, and Environmental Quotient; 3 Isolation and Preparation of Microorganisms; 3.1 Introduction; 3.2 Screening of New Enzyme Activities; 3.2.1 Growth Rates in Nature; 3.2.2 Methods in Microbial Ecology; 3.3 Strain Development; 3.3.1 Range of Industrial Products from Microorganisms; 3.3.2 Strain Improvement; 3.4 Extremophiles; 3.4.1 Extremophiles in Industry; 3.5 Rapid Screening of Biocatalysts; 4 Molecular Biology Tools for Biocatalysis
4.1 Molecular Biology Basics: DNA versus Protein Level
Record Nr. UNINA-9910830140403321
Bommarius A. S (Andreas Sebastian)  
Weinheim ; ; Cambridge, : Wiley-VCH, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biocatalysis [[electronic resource] /] / A. S. Bommarius, B. R. Riebel
Biocatalysis [[electronic resource] /] / A. S. Bommarius, B. R. Riebel
Autore Bommarius A. S (Andreas Sebastian)
Pubbl/distr/stampa Weinheim ; ; Cambridge, : Wiley-VCH, c2004
Descrizione fisica 1 online resource (637 p.)
Disciplina 660.634
Altri autori (Persone) RiebelB. R (Bettina R.)
Soggetto topico Enzymes - Biotechnology
Biosynthesis
Catalysis
ISBN 1-280-56086-X
9786610560868
3-527-60605-X
3-527-60236-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biocatalysis; Preface; Acknowledgments; Contents; 1 Introduction to Biocatalysis; 1.1 Overview: The Status of Biocatalysis at the Turn of the 21st Century; 1.1.1 State of Acceptance of Biocatalysis; 1.1.2 Current Advantages and Drawbacks of Biocatalysis; 1.1.2.1 Advantages of Biocatalysts; 1.1.2.2 Drawbacks of Current Biocatalysts; 1.2 Characteristics of Biocatalysis as a Technology; 1.2.1 Contributing Disciplines and Areas of Application; 1.2.2 Characteristics of Biocatalytic Transformations; 1.2.2.1 Comparison of Biocatalysis with other Kinds of Catalysis
1.2.3 Applications of Biocatalysis in Industry1.2.3.1 Chemical Industry of the Future: Environmentally Benign Manufacturing, Green Chemistry, Sustainable Development in the Future; 1.2.3.2 Enantiomerically Pure Drugs or Advanced Pharmaceutical Intermediates (APIs); 1.3 Current Penetration of Biocatalysis; 1.3.1 The Past: Historical Digest of Enzyme Catalysis; 1.3.2 The Present: Status of Biocatalytic Processes; 1.4 The Breadth of Biocatalysis; 1.4.1 Nomenclature of Enzymes; 1.4.2 Biocatalysis and Organic Chemistry, or "Do we Need to Forget our Organic Chemistry?"
2 Characterization of a (Bio-)catalyst2.1 Characterization of Enzyme Catalysis; 2.1.1 Basis of the Activity of Enzymes: What is Enzyme Catalysis?; 2.1.1.1 Enzyme Reaction in a Reaction Coordinate Diagram; 2.1.2 Development of Enzyme Kinetics from Binding and Catalysis; 2.2 Sources and Reasons for the Activity of Enzymes as Catalysts; 2.2.1 Chronology of the Most Important Theories of Enzyme Activity; 2.2.2 Origin of Enzymatic Activity: Derivation of the Kurz Equation; 2.2.3 Consequences of the Kurz Equation; 2.2.4 Efficiency of Enzyme Catalysis: Beyond Pauling's Postulate
2.3 Performance Criteria for Catalysts, Processes, and Process Routes2.3.1 Basic Performance Criteria for a Catalyst: Activity, Selectivity and Stability of Enzymes; 2.3.1.1 Activity; 2.3.1.2 Selectivity; 2.3.1.3 Stability; 2.3.2 Performance Criteria for the Process; 2.3.2.1 Product Yield; 2.3.2.2 (Bio)catalyst Productivity; 2.3.2.3 (Bio)catalyst Stability; 2.3.2.4 Reactor Productivity; 2.3.3 Links between Enzyme Reaction Performance Parameters; 2.3.3.1 Rate Acceleration; 2.3.3.2 Ratio between Catalytic Constant k(cat) and Deactivation Rate Constant k(d)
2.3.3.3 Relationship between Deactivation Rate Constant k(d) and Total Turnover Number TTN2.3.4 Performance Criteria for Process Schemes, Atom Economy, and Environmental Quotient; 3 Isolation and Preparation of Microorganisms; 3.1 Introduction; 3.2 Screening of New Enzyme Activities; 3.2.1 Growth Rates in Nature; 3.2.2 Methods in Microbial Ecology; 3.3 Strain Development; 3.3.1 Range of Industrial Products from Microorganisms; 3.3.2 Strain Improvement; 3.4 Extremophiles; 3.4.1 Extremophiles in Industry; 3.5 Rapid Screening of Biocatalysts; 4 Molecular Biology Tools for Biocatalysis
4.1 Molecular Biology Basics: DNA versus Protein Level
Record Nr. UNINA-9910841552003321
Bommarius A. S (Andreas Sebastian)  
Weinheim ; ; Cambridge, : Wiley-VCH, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui