top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fast sequential Monte Carlo methods for counting and optimization / / Reuven Rubinstein, Ad Ridder, Radislav Vaisman
Fast sequential Monte Carlo methods for counting and optimization / / Reuven Rubinstein, Ad Ridder, Radislav Vaisman
Autore Rubinstein Reuven Y
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Descrizione fisica 1 online resource (208 p.)
Disciplina 518/.282
Altri autori (Persone) RidderAd <1955->
VaismanRadislav
Collana Wiley series in probability and statistics
Soggetto topico Mathematical optimization
Monte Carlo method
ISBN 1-118-61235-3
1-118-61232-9
1-118-61231-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Contents; Preface; Chapter 1 Introduction to Monte Carlo Methods; Chapter 2 Cross-Entropy Method; 2.1. Introduction; 2.2. Estimation of Rare-Event Probabilities; 2.3. Cross-Entrophy Method for Optimization; 2.3.1. The Multidimensional 0/1 Knapsack Problem; 2.3.2. Mastermind Game; 2.3.3. Markov Decision Process and Reinforcement Learning; 2.4. Continuous Optimization; 2.5. Noisy Optimization; 2.5.1. Stopping Criterion; Chapter 3 Minimum Cross-Entropy Method; 3.1. Introduction; 3.2. Classic MinxEnt Method; 3.3. Rare Events and MinxEnt; 3.4. Indicator MinxEnt Method
3.4.1. Connection between CE and IME3.5. IME Method for Combinatorial Optimization; 3.5.1. Unconstrained Combinatorial Optimization; 3.5.2. Constrained Combinatorial Optimization: The Penalty Function Approach; Chapter 4 Splitting Method for Counting and Optimization; 4.1. Background; 4.2. Quick Glance at the Splitting Method; 4.3. Splitting Algorithm with Fixed Levels; 4.4. Adaptive Splitting Algorithm; 4.5. Sampling Uniformly on Discrete Regions; 4.6. Splitting Algorithm for Combinatorial Optimization; 4.7. Enhanced Splitting Method for Counting; 4.7.1. Counting with the Direct Estimator
4.7.2. Counting with the Capture-Recapture Method4.8. Application of Splitting to Reliability Models; 4.8.1. Introduction; 4.8.2. Static Graph Reliability Problem; 4.8.3. BMC Algorithm for Computing S(Y); 4.8.4. Gibbs Sampler; 4.9. Numerical Results with the Splitting Algorithms; 4.9.1. Counting; 4.9.2. Combinatorial Optimization; 4.9.3. Reliability Models; 4.10. Appendix: Gibbs Sampler; Chapter 5 Stochastic Enumeration Method; 5.1. Introduction; 5.2. OSLA Method and Its Extensions; 5.2.1. Extension of OSLA: nSLA Method; 5.2.2. Extension of OSLA for SAW: Multiple Trajectories; 5.3. SE Method
5.3.1. SE Algorithm5.4. Applications of SE; 5.4.1. Counting the Number of Trajectories in a Network; 5.4.2. SE for Probabilities Estimation; 5.4.3. Counting the Number of Perfect Matchings in a Graph; 5.4.4. Counting SAT; 5.5. Numerical Results; 5.5.1. Counting SAW; 5.5.2. Counting the Number of Trajectories in a Network; 5.5.3. Counting the Number of Perfect Matchings in a Graph; 5.5.4. Counting SAT; 5.5.5. Comparison of SE with Splitting and SampleSearch; Appendix A Additional Topics; A.1. Combinatorial Problems; A.1.1. Counting; A.1.2. Combinatorial Optimization; A.2. Information
A.2.1. Shannon EntropyA.2.2. Kullback-Leibler Cross-Entropy; A.3. Efficiency of Estimators; A.3.1. Complexity; A.3.2. Complexity of Randomized Algorithms; Bibliography; Abbreviations and Acronyms; List of Symbols; Index; Series Page
Record Nr. UNINA-9910139030003321
Rubinstein Reuven Y  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fast sequential Monte Carlo methods for counting and optimization / / Reuven Rubinstein, Ad Ridder, Radislav Vaisman
Fast sequential Monte Carlo methods for counting and optimization / / Reuven Rubinstein, Ad Ridder, Radislav Vaisman
Autore Rubinstein Reuven Y
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Descrizione fisica 1 online resource (208 p.)
Disciplina 518/.282
Altri autori (Persone) RidderAd <1955->
VaismanRadislav
Collana Wiley series in probability and statistics
Soggetto topico Mathematical optimization
Monte Carlo method
ISBN 1-118-61235-3
1-118-61232-9
1-118-61231-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Contents; Preface; Chapter 1 Introduction to Monte Carlo Methods; Chapter 2 Cross-Entropy Method; 2.1. Introduction; 2.2. Estimation of Rare-Event Probabilities; 2.3. Cross-Entrophy Method for Optimization; 2.3.1. The Multidimensional 0/1 Knapsack Problem; 2.3.2. Mastermind Game; 2.3.3. Markov Decision Process and Reinforcement Learning; 2.4. Continuous Optimization; 2.5. Noisy Optimization; 2.5.1. Stopping Criterion; Chapter 3 Minimum Cross-Entropy Method; 3.1. Introduction; 3.2. Classic MinxEnt Method; 3.3. Rare Events and MinxEnt; 3.4. Indicator MinxEnt Method
3.4.1. Connection between CE and IME3.5. IME Method for Combinatorial Optimization; 3.5.1. Unconstrained Combinatorial Optimization; 3.5.2. Constrained Combinatorial Optimization: The Penalty Function Approach; Chapter 4 Splitting Method for Counting and Optimization; 4.1. Background; 4.2. Quick Glance at the Splitting Method; 4.3. Splitting Algorithm with Fixed Levels; 4.4. Adaptive Splitting Algorithm; 4.5. Sampling Uniformly on Discrete Regions; 4.6. Splitting Algorithm for Combinatorial Optimization; 4.7. Enhanced Splitting Method for Counting; 4.7.1. Counting with the Direct Estimator
4.7.2. Counting with the Capture-Recapture Method4.8. Application of Splitting to Reliability Models; 4.8.1. Introduction; 4.8.2. Static Graph Reliability Problem; 4.8.3. BMC Algorithm for Computing S(Y); 4.8.4. Gibbs Sampler; 4.9. Numerical Results with the Splitting Algorithms; 4.9.1. Counting; 4.9.2. Combinatorial Optimization; 4.9.3. Reliability Models; 4.10. Appendix: Gibbs Sampler; Chapter 5 Stochastic Enumeration Method; 5.1. Introduction; 5.2. OSLA Method and Its Extensions; 5.2.1. Extension of OSLA: nSLA Method; 5.2.2. Extension of OSLA for SAW: Multiple Trajectories; 5.3. SE Method
5.3.1. SE Algorithm5.4. Applications of SE; 5.4.1. Counting the Number of Trajectories in a Network; 5.4.2. SE for Probabilities Estimation; 5.4.3. Counting the Number of Perfect Matchings in a Graph; 5.4.4. Counting SAT; 5.5. Numerical Results; 5.5.1. Counting SAW; 5.5.2. Counting the Number of Trajectories in a Network; 5.5.3. Counting the Number of Perfect Matchings in a Graph; 5.5.4. Counting SAT; 5.5.5. Comparison of SE with Splitting and SampleSearch; Appendix A Additional Topics; A.1. Combinatorial Problems; A.1.1. Counting; A.1.2. Combinatorial Optimization; A.2. Information
A.2.1. Shannon EntropyA.2.2. Kullback-Leibler Cross-Entropy; A.3. Efficiency of Estimators; A.3.1. Complexity; A.3.2. Complexity of Randomized Algorithms; Bibliography; Abbreviations and Acronyms; List of Symbols; Index; Series Page
Record Nr. UNINA-9910807943703321
Rubinstein Reuven Y  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui