top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
5G and E-Band Communication Circuits in Deep-Scaled CMOS / / by Marco Vigilante, Patrick Reynaert
5G and E-Band Communication Circuits in Deep-Scaled CMOS / / by Marco Vigilante, Patrick Reynaert
Autore Vigilante Marco
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (205 pages) : illustrations
Disciplina 004.16
Collana Analog Circuits and Signal Processing
Soggetto topico Electronic circuits
Microprocessors
Circuits and Systems
Electronic Circuits and Devices
Processor Architectures
ISBN 3-319-72646-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Gm Stage and Passives in deep-scaled CMOS -- Gain-Bandwidth Enhancement Techniques for mm-Wave fully integrated Amplifiers -- mm-Wave LC VCOs -- mm-Wave Dividers -- mm-Wave Broadband Downconverters -- mm-Wave Highly-Linear Broadband Power Amplifiers -- Conclusion.
Record Nr. UNINA-9910299955203321
Vigilante Marco  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CMOS 60-GHz and E-band Power Amplifiers and Transmitters / / by Dixian Zhao, Patrick Reynaert
CMOS 60-GHz and E-band Power Amplifiers and Transmitters / / by Dixian Zhao, Patrick Reynaert
Autore Zhao Dixian
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (188 p.)
Disciplina 621.382
Collana Analog Circuits and Signal Processing
Soggetto topico Electronic circuits
Electronics
Microelectronics
Circuits and Systems
Electronic Circuits and Devices
Electronics and Microelectronics, Instrumentation
ISBN 3-319-18839-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- PA and Transmitter Basics -- mm-Wave Active and Passive Devices -- Low-Power and Efficiency Enhancement Techniques for mm-Wave PAs -- mm-Wave Outphasing Transmitter -- mm-Wave Broadband Direct-Conversion TX towards 10+Gb/s -- mm-Wave Broadband Power Amplifier towards 20+dBm -- Conclusion and Outlook.
Record Nr. UNINA-9910299821503321
Zhao Dixian  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CMOS Front Ends for Millimeter Wave Wireless Communication Systems / / by Noël Deferm, Patrick Reynaert
CMOS Front Ends for Millimeter Wave Wireless Communication Systems / / by Noël Deferm, Patrick Reynaert
Autore Deferm Noël
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (188 p.)
Disciplina 621.384
Collana Analog Circuits and Signal Processing
Soggetto topico Electronic circuits
Electronics
Microelectronics
Circuits and Systems
Electronic Circuits and Devices
Electronics and Microelectronics, Instrumentation
ISBN 3-319-13951-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- CMOS at Millimeter Wave Frequencies -- Passive Devices: Simulation and Design -- Integrated Differential Amplifiers -- Millimeter Wave Transmitters in CMOS -- A 120GHz Wireless Link -- General Conclusions.
Record Nr. UNINA-9910299688103321
Deferm Noël  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Continuous-time digital front-ends for multistandard wireless transmission / / Pieter A.J. Nuyts, Patrick Reynaert, Wim Dehaene
Continuous-time digital front-ends for multistandard wireless transmission / / Pieter A.J. Nuyts, Patrick Reynaert, Wim Dehaene
Autore Nuyts Pieter A. J
Edizione [1st ed. 2014.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , 2014
Descrizione fisica 1 online resource (xxv, 309 pages) : illustrations
Disciplina 621.39732
Collana Analog Circuits and Signal Processing
Soggetto topico Digital integrated circuits
ISBN 3-319-03925-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Digital Transmitter Architectures: Overview -- High-Level Analysis of Fully Digital PWM Transmitters -- Continuous-time Digital Design Techniques -- A 65-nm CMOS Fully Digital Reconfigurable Transmitter Front-End for Class-E PA based on Baseband PWM -- A 40-nm CMOS Fully Digital Reconfigurable Transmitter with Class-D Pas using Baseband and RF PWM -- Conclusions and Future Work.
Record Nr. UNINA-9910299481703321
Nuyts Pieter A. J  
Cham, Switzerland : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mm-wave circuit design in 16nm FinFET for 6G applications / / Bart Philippe and Patrick Reynaert
Mm-wave circuit design in 16nm FinFET for 6G applications / / Bart Philippe and Patrick Reynaert
Autore Philippe Bart
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (145 pages)
Disciplina 621.39732
Collana Analog Circuits and Signal Processing
Soggetto topico Metal oxide semiconductors, Complementary
Metal oxide semiconductors, Complementary - Design
ISBN 3-031-11224-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Acronyms and Symbols -- 1 Introduction -- 1.1 Toward the Sixth-Generation (6G) Mobile Networks -- 1.1.1 Millimeter Wave to Increase Data Rates -- 1.2 Millimeter Wave in FinFET CMOS, the Next Step -- 1.3 Book Outline -- References -- 2 Basic Components in mm-Wave Design -- 2.1 Actives -- 2.1.1 fT, fmax a FoM for mm-Wave Transistors -- 2.1.2 The Effect of Scaling -- mm-Wave in FinFET -- 2.1.3 Transistor Layout and mm-Wave Performance -- 2.2 Passives -- 2.2.1 Capacitors -- 2.2.2 Inductors -- 2.2.3 Transformers -- 2.2.3.1 Transformer Topology -- 2.2.4 Transmission Lines -- 2.3 Basic Design of mm-Wave Circuits -- 2.3.1 A Capacitive Neutralized mm-Wave Amplifier -- 2.3.2 Design of mm-Wave Interconnects -- 2.3.2.1 Transformer Matching: A Coupled RLC Resonator -- 2.4 Conclusion -- References -- 3 Frequency Generation -- 3.1 VCO Basics -- 3.1.1 Brief on Phase Noise -- 3.1.2 Frequency Tuning -- 3.1.2.1 Varactor Tuning -- 3.1.2.2 Switched Capacitors -- 3.1.2.3 Switched Inductors -- 3.2 LO Architectures and Trends at mm-Wave -- 3.3 Challenges of a Deeply Scaled Technology at mm-Wave -- 3.4 A 4th Order Transformer-Based Resonator -- 3.5 Design Example: A Fundamental Oscillator -- 3.5.1 The Cross-Coupled Pair -- 3.5.2 The Resonator Design -- 3.5.3 Measurement Results -- 3.6 Design Example: A Harmonic Oscillator -- 3.6.1 Basic Principle -- 3.6.2 Proposed Design -- 3.6.3 Output Buffers -- 3.6.3.1 Fundamental Buffer -- 3.6.3.2 Third Harmonic Buffer -- 3.6.4 Measurement Results -- 3.7 Conclusion -- References -- 4 Power Amplification -- 4.1 Introduction -- 4.2 Power Amplifier Basics -- 4.2.1 Gain and Power -- 4.2.2 Efficiency -- 4.2.3 PA Linearity -- 4.2.4 PA Classes and Biasing -- 4.2.5 Challenge at mm-Wave in a Deeply Scaled Technology -- 4.2.5.1 The Effect of Drain Resistance -- 4.2.5.2 Limits on Output Power.
4.3 Design Example: A Class-A Two-Way Power Combining D-Band PA in 16nm FinFET -- 4.3.1 Design of the 16nm FinFET Transistor -- 4.3.2 Build-up of the Power Amplifier -- 4.3.2.1 Power Combining to Extend the Power Limit -- 4.3.2.2 Completing the Circuit with Drivers -- 4.3.3 Measurement Results -- 4.4 Conclusion -- References -- 5 A D-band Direct-Conversion Transmitter with Enhanced PA -- 5.1 Efficiency Enhancement Techniques -- 5.1.1 Common Efficiency Enhancement Techniques -- 5.1.1.1 Doherty Power Amplifier -- 5.1.1.2 Outphasing PA -- 5.1.1.3 Conclusion: Difficulties for > -- 100 GHz Power Amplifiers -- 5.1.2 A Sequential Power Amplifier -- 5.1.3 Conclusion -- 5.2 Linearization Techniques by Dynamic Bias -- 5.2.1 AM-AM Compensation -- 5.2.2 AM-PM Compensation -- 5.2.2.1 Capacitive Compensation -- 5.2.2.2 Fixed Phase Offset -- 5.3 Design Example: A Direct-Conversion TX with Enhanced PA -- 5.3.1 The Dynamic Bias Enhanced PA -- 5.3.1.1 Amplifier Stages and Interstage Matching -- 5.3.1.2 The Dynamic Bias Circuit -- 5.3.1.3 AM-PM Control -- 5.3.1.4 PA Simulation Results -- 5.3.2 The I/Q Modulator and LO Generation -- 5.3.2.1 Quadrature LO Circuit -- 5.3.2.2 The Double Balanced IQ-Mixer -- 5.4 Measurements and Discussion -- 5.4.1 Power Amplifier Measurements -- 5.4.1.1 Small-Signal Measurement -- 5.4.1.2 Large Signal Measurement -- 5.4.1.3 Conclusion PA Measurements -- 5.4.2 Transmitter Measurements -- 5.4.2.1 Continuous Wave Measurements and Characterization -- 5.4.2.2 Modulated Data Measurements -- 5.5 Conclusion -- References -- Index.
Record Nr. UNINA-9910627270203321
Philippe Bart  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
THz and Sub-THz CMOS Electronics for High-Speed Telecommunication : Architectures and Circuits for Future 6G Transceivers
THz and Sub-THz CMOS Electronics for High-Speed Telecommunication : Architectures and Circuits for Future 6G Transceivers
Autore D'heer Carl
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (417 pages)
Altri autori (Persone) ReynaertPatrick
Collana Analog Circuits and Signal Processing Series
ISBN 3-031-64439-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- List of Abbreviations -- List of Symbols -- 1 Introduction -- 1.1 High-Speed Telecommunication: Evolution and Trends -- 1.1.1 A Brief History of Electronic Telecommunication -- 1.1.1.1 From Smoke Signals to Radio -- 1.1.1.2 The Start of the Semiconductor Era -- 1.1.2 Classification of Telecommunication Methods -- 1.1.2.1 Wireline Communication -- 1.1.2.2 Wireless Communication -- 1.1.3 Recent Trends in the World of Telecommunications -- 1.1.3.1 Wireline Communication -- 1.1.3.2 Wireless Communication -- 1.1.4 The Never-Ending Need for Speed and Efficiency -- 1.2 The THz and Sub-THz Spectrum -- 1.2.1 Overview of the Electromagnetic Spectrum -- 1.2.2 THz, Sub-THz, and mm-Wave -- 1.3 Telecommunication at (Sub-)THz Frequencies -- 1.3.1 Benefits -- 1.3.1.1 Modulation Bandwidth -- 1.3.1.2 Form Factor -- 1.3.2 Challenges -- 1.3.2.1 Propagation Loss -- 1.3.2.2 Transmitter and Receiver Performance -- 1.3.3 Applications -- 1.3.3.1 Considerations for (Sub-)THz Telecommunication -- 1.3.3.2 Wireless Communication -- 1.3.3.3 Wireline Communication -- 1.4 Why CMOS Electronics? -- 1.5 Outline of the Book -- 2 Fundamentals of Telecommunication -- 2.1 Mathematics -- 2.1.1 Introduction to Information Theory -- 2.1.1.1 What Is Information? -- 2.1.1.2 Nyquist: Maximum Symbol Rate -- 2.1.1.3 Hartley: Quantification of Line Rate -- 2.1.1.4 Shannon: Channel Capacity -- 2.1.2 Welcome to the Frequency Domain -- 2.1.2.1 Fourier Transform -- 2.1.2.2 Fourier Series -- 2.1.2.3 Power Spectral Density and Bandwidth -- 2.1.3 From Analog to Digital: Sampling and Quantization -- 2.1.3.1 Sampling -- 2.1.3.2 Quantization -- 2.2 Digital Modulation -- 2.2.1 Modulation Fundamentals -- 2.2.2 Baseband Signaling -- 2.2.3 Passband Signaling -- 2.2.3.1 Modulation, Complex Envelope, and Signal Constellations -- 2.2.3.2 Demodulation and Eye Diagrams.
2.2.4 Simple Modulations: ASK, PSK, and FSK -- 2.2.4.1 Amplitude-Shift Keying -- 2.2.4.2 Phase-Shift Keying -- 2.2.4.3 Frequency-Shift Keying -- 2.2.5 Complex Modulations: QAM and APSK -- 2.2.5.1 Quadrature Amplitude Modulation -- 2.2.5.2 Amplitude and Phase-Shift Keying -- 2.3 Performance of Telecommunication Systems -- 2.3.1 General Framework and Components -- 2.3.1.1 TX-Side DSP -- 2.3.1.2 Digital-to-Analog Converter -- 2.3.1.3 TX RF Front-End -- 2.3.1.4 Channel -- 2.3.1.5 RX RF Front-End -- 2.3.1.6 Analog-to-Digital Converter -- 2.3.1.7 RX-Side DSP -- 2.3.1.8 Evaluating Performance -- 2.3.2 Noise -- 2.3.2.1 Origin and Properties of Noise -- 2.3.2.2 Additive White Gaussian Noise -- 2.3.2.3 Phase Noise -- 2.3.2.4 BER for Baseband Signaling -- 2.3.2.5 BER for Passband Signaling -- 2.3.2.6 SNR and EVM -- 2.3.2.7 Noise Figure -- 2.3.2.8 Matched Filtering -- 2.3.2.9 Forward Error Correction -- 2.3.3 Nonlinearity -- 2.3.3.1 Harmonic Distortion -- 2.3.3.2 Gain Compression -- 2.3.3.3 Intermodulation Distortion -- 2.3.3.4 Phase Distortion -- 2.3.3.5 Linearity Requirements for Passband Modulations -- 2.3.3.6 Predistortion -- 2.3.4 Bandlimiting Filtering -- 2.3.4.1 Types of Filtering -- 2.3.4.2 BW, ISI, and Power Penalty -- 2.3.4.3 Pulse Shaping -- 2.3.4.4 Equalization -- 2.3.5 Propagation and Link Budget -- 2.3.5.1 Wireless Propagation -- 2.3.5.2 Guided DWG Propagation -- 2.3.5.3 Link Budget -- 2.3.6 Performance Comparison of Modulation Techniques -- 2.4 Conclusion -- 3 Basic Electronics and Components -- 3.1 Electromagnetism and Circuit Theory -- 3.1.1 Maxwell and Electromagnetic Waves -- 3.1.1.1 Maxwell's Equations -- 3.1.1.2 Electromagnetic Wave Propagation -- 3.1.1.3 Basic Properties of TEM Waves -- 3.1.1.4 Power Flow and Poynting Vector -- 3.1.1.5 Planar Waves in a Lossy Medium -- 3.1.2 Electromagnetic Waves in Dielectric Waveguides.
3.1.2.1 Propagation Principles -- 3.1.2.2 Attenuation -- 3.1.2.3 Dispersion -- 3.1.3 Basic Circuit Theory -- 3.1.3.1 Voltage and Current -- 3.1.3.2 Resistor -- 3.1.3.3 Inductor -- 3.1.3.4 Capacitor -- 3.1.3.5 Rules of Circuit Theory -- 3.1.4 Transmission Line Theory -- 3.1.4.1 Lumped-Element Model of a Transmission Line -- 3.1.4.2 Field Interpretation of a Transmission Line -- 3.1.4.3 Behavior of Transmission Lines -- 3.2 Active Components -- 3.2.1 MOSFETs in CMOS -- 3.2.2 Basic MOSFET Characteristics -- 3.2.2.1 Regions of Operation -- 3.2.2.2 MOSFET as a Transconductance -- 3.2.2.3 MOSFET as a Switch -- 3.2.3 MOSFETs at High Frequencies -- 3.2.3.1 Transistor Gain: fT and fmax -- 3.2.3.2 Transistor Noise: Fmin -- 3.2.4 Transistor Optimization -- 3.2.4.1 Gate Resistance Optimization -- 3.2.4.2 Layout Optimization and Modeling -- 3.2.5 Effects of Scaling -- 3.3 Passive Components -- 3.3.1 Metal Stack and Effects of Scaling -- 3.3.2 Inductors -- 3.3.2.1 Inductor Model -- 3.3.2.2 Implementation -- 3.3.3 Transformers -- 3.3.3.1 Transformer Model -- 3.3.3.2 Implementation -- 3.3.4 Capacitors -- 3.3.4.1 Capacitor Model -- 3.3.4.2 Implementation -- 3.3.5 Transmission Lines -- 3.3.5.1 Transmission Line Model -- 3.3.5.2 Implementation -- 3.4 Conclusion -- 4 High-Frequency Circuit Design -- 4.1 Matching Fundamentals -- 4.1.1 S-Parameters -- 4.1.2 Types of Matching -- 4.1.2.1 Conjugate Matching -- 4.1.2.2 Large-Signal Power Matching -- 4.1.2.3 Noise Matching -- 4.1.3 Matching Networks and Bode-Fano Limit -- 4.1.4 RLC Resonators -- 4.1.4.1 RC Low-Pass Circuit -- 4.1.4.2 Parallel RLC Circuit -- 4.1.4.3 Series RLC Circuit -- 4.1.4.4 Parallel-Series Transformation -- 4.1.5 The Many Faces of Q -- 4.1.5.1 Untuned Component -- 4.1.5.2 Tuned Network -- 4.1.6 Matching Network Implementations -- 4.1.6.1 Lumped-Element Matching -- 4.1.6.2 Distributed Matching.
4.2 Stability -- 4.2.1 Two-Port Verification Criteria -- 4.2.2 Open-Loop Stability Verification -- 4.2.3 Closed-Loop Stability Verification -- 4.3 Neutralized Pseudo-Differential Pair -- 4.3.1 Performance Metrics for Amplifiers -- 4.3.2 Differential vs. Single-Ended Design -- 4.3.3 Capacitive Neutralization -- 4.3.4 Amplifier Topologies -- 4.3.5 Implementation of an NPDP -- 4.3.6 Design of an NPDP -- 4.3.6.1 Transistor Size -- 4.3.6.2 Biasing -- 4.4 Transformer-Based Matching Networks -- 4.4.1 Why Transformer-Based Matching? -- 4.4.2 Frequency Response of a Transformer-Based Network -- 4.4.3 Realistic Transformer Networks -- 4.4.4 Practical Matching Methodology -- 4.4.5 Transformer Implementation -- 4.4.6 Broadband Multistage Amplifier Design -- 4.5 Overview of Amplifier-Based Circuit Blocks -- 4.5.1 Designing for Gain: Small-Signal Amplifiers -- 4.5.2 Designing for Power: Power Amplifiers -- 4.5.3 Designing for Noise: Low-Noise Amplifiers -- 4.5.4 Designing for Nonlinearity: Frequency Multipliers -- 4.5.5 Non-amplifier-Based Circuit Blocks -- 4.6 Conclusion -- 5 System-Level Considerations -- 5.1 Qualitative Discussion on Link Capacity and Efficiency -- 5.1.1 SNR and Modulation Scheme -- 5.1.2 Bandwidth and Carrier Frequency -- 5.1.3 Number of Channels and Multiplexing -- 5.1.4 System-Level Design -- 5.1.5 A Note on Architectures -- 5.1.6 Let Us Get Numerical! -- 5.2 Shannon's Link Capacity over Frequency -- 5.2.1 General Link Model -- 5.2.2 Performance over Frequency -- 5.2.2.1 Transmitter Output Power -- 5.2.2.2 Receiver Noise Figure -- 5.2.2.3 System Bandwidth -- 5.2.2.4 Antenna Gain -- 5.2.3 Evaluating Shannon's Capacity -- 5.3 Modulation-Specific Link Capacity -- 5.3.1 Calculating Mutual Information -- 5.3.2 Evaluating Modulation-Specific Capacities -- 5.4 Adding System Impairments -- 5.4.1 PA Nonlinearity -- 5.4.2 LO Phase Noise.
5.4.3 DAC/ADC Aperture Jitter -- 5.4.4 Inter-symbol Interference -- 5.4.4.1 1st Order Filter -- 5.4.4.2 Multistage Filter -- 5.4.4.3 Power Penalty for Multilevel Signaling -- 5.4.5 Other Transceiver Impairments -- 5.4.6 Evaluating Impaired Link Capacities -- 5.5 Extending the Range of Single-Cell Wireless Systems -- 5.5.1 Phased-Array Wireless Links -- 5.5.1.1 Benefits and Challenges of Phased Arrays -- 5.5.1.2 Evaluating Phased-Array Link Capacities -- 5.5.2 Dielectric Waveguide Links -- 5.5.2.1 DWG Characteristics -- 5.5.2.2 Dispersion Modeling -- 5.5.2.3 Evaluating DWG Link Capacities -- 5.6 Modeling Power Consumption and Energy Efficiency -- 5.6.1 RF Font-End -- 5.6.1.1 Power Amplifier -- 5.6.1.2 Low-Noise Amplifier -- 5.6.1.3 Mixer -- 5.6.2 LO Generation -- 5.6.2.1 Voltage-Controlled Oscillator -- 5.6.2.2 LO Buffers -- 5.6.3 Data Converters -- 5.6.3.1 DACs and ADCs -- 5.6.3.2 Clock Generation -- 5.6.3.3 Baseband Amplifiers -- 5.6.4 Energy Efficiency -- 5.6.4.1 Modeling Methodology -- 5.6.4.2 Link Efficiency Example -- 5.7 Efficiency Case Studies -- 5.7.1 Case Study 1: 25Gb/s Wireless Link vs. Distance -- 5.7.2 Case Study 2: 1m Wireless Link vs. Data Rate -- 5.7.3 Case Study 3: 25Gb/s DWG Link vs. Distance -- 5.7.4 Case Study 4: 5m DWG Link vs. Data Rate -- 5.8 Conclusion -- 6 A High-Speed 390GHz BPOOK Transmitter -- 6.1 Overview of THz Transmitter Architectures -- 6.1.1 Below-fmax Transmitters -- 6.1.2 Above-fmax Transmitters -- 6.1.2.1 Mixer-Last Transmitter -- 6.1.2.2 Multiplier-Last Transmitter -- 6.1.2.3 Multiplying Mixer-Last Transmitter -- 6.1.2.4 Harmonic VCO-Based Transmitter -- 6.1.3 Chosen THz Transmitter Architecture -- 6.2 Binary-Phase On-Off Keying -- 6.2.1 Modulation Considerations for THz Systems -- 6.2.2 BPOOK and Duobinary Encoding -- 6.2.3 BPOOK Encoding and Decoding Techniques -- 6.3 Transmitter Circuit Design.
6.3.1 Transmitter Architecture Overview.
Record Nr. UNINA-9910878991203321
D'heer Carl  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui