Biomaterials from nature for advanced devices and therapies / / edited by Nuno Neves, Rui L Reis |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (726 p.) |
Disciplina | 660.6 |
Collana | Wiley-Society for Biomaterials Series |
Soggetto topico | Biomedical materials - Therapeutic use |
ISBN |
1-119-17807-X
1-119-17808-8 1-119-12621-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Biomaterials from Nature for Advanced Devices and Therapies; Contents; Contributors; Preface; PART I; 1 Collagen-Based Porous Scaffolds for Tissue Engineering; 1.1 Introduction; 1.2 Collagen Sponges; 1.3 Collagen Sponges with Micropatterned Pore Structures; 1.4 Collagen Sponges with Controlled Bulk Structures; 1.5 Hybrid Scaffolds; 1.6 Conclusions; References; 2 Marine Collagen Isolation and Processing Envisaging Biomedical Applications; 2.1 Introduction; 2.2 Extraction of Collagen From Marine Sources; 2.2.1 Extraction of Collagen from Fish, Jellyfish and Molluscs
2.2.2 Extraction of Collagen from Other Sources: Marine Sponges2.3 Collagen Characterization; 2.3.1 Fourier Transform InfraRed Spectroscopy (FTIR); 2.3.2 Differential Scanning Calorimetry (DSC); 2.3.3 Circular Dichroism (CD); 2.3.4 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE); 2.3.5 Amino Acid Analysis ; 2.4 Marine Collagen Wide Applications; 2.4.1 Marine Collagen-Based Biomaterials Properties; 2.4.2 Marine Collagen Applications in Tissue Engineering; 2.4.3 Other Tissue Engineering Applications; 2.5 Final Remarks; Acknowledgements; References 3 Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering3.1 Introduction; 3.2 Crosslinking of Gelatin; 3.3 Physical Properties of Gelatin; 3.4 Application of Gelatin-Based Biomaterials In Tissue Engineering; 3.4.1 Cardiovascular Tissue Engineering; 3.4.2 Bone Tissue Engineering; 3.4.3 Hepatic Tissue Engineering; 3.4.4 Ophthalmology; 3.4.5 Dermatology ; 3.4.6 Miscellaneous Applications ; 3.5 Gelatin for Stem Cell Therapy; 3.5.1 Embryonic Stem Cells; 3.5.2 Adult Stem Cells; 3.5.3 Induced Pluripotent Stem Cells; 3.6 Application of Gelatin In Delivery Systems 3.7 Conclusion and PerspectivesAcknowledgements; Abbreviations; References; 4 Hyaluronic Acid-Based Hydrogels on a Micro and Macro Scale; 4.1 Classification and Structure of Hydrogels; 4.2 Hyaluronic Acid; 4.3 Hydrogel Mechanical Properties; 4.3.1 Dynamic Mechanical Analysis; 4.3.2 Stress Strain Behavior; 4.4 HA-Based Hydrogel for Biomedical Applications; 4.4.1 Regenerative Medicine; 4.4.2 Drug Delivery; References; 5 Chondroitin Sulfate as a Bioactive Macromolecule for Advanced Biological Applications and Therapies; 5.1 CS Structure; 5.2 Biological Roles of CS; 5.3 Osteoarthritis Treatment 5.4 Cardio-Cerebrovascular Disease5.5 Tissue Regeneration and Engineering; 5.6 Chondroitin Sulfate-Polymer Conjugates; 5.7 Conclusions and Future Perspectives; References; 6 Keratin; 6.1 Introduction; 6.2 Preparation of Keratoses; 6.3 Preparation of Kerateines; 6.4 Oxidative Sulfitolysis; 6.5 Summary; References; 7 Elastin-Like Polypeptides: Bio-Inspired Smart Polymers for Protein Purification, Drug Delivery and Tissue Engineering; 7.1 Introduction; 7.2 Recombinant Protein Production Using ELPs as Purification Tags; 7.2.1 ELP Expression; 7.2.2 ELP Purification; 7.2.3 Tag Removal 7.2.4 Biological Evaluation of Purified Protein |
Record Nr. | UNINA-9910166635003321 |
Hoboken, New Jersey : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomaterials from nature for advanced devices and therapies / / edited by Nuno Neves, Rui L Reis |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2016 |
Descrizione fisica | 1 online resource (726 p.) |
Disciplina | 660.6 |
Collana | Wiley-Society for Biomaterials Series |
Soggetto topico | Biomedical materials - Therapeutic use |
ISBN |
1-119-17807-X
1-119-17808-8 1-119-12621-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Biomaterials from Nature for Advanced Devices and Therapies; Contents; Contributors; Preface; PART I; 1 Collagen-Based Porous Scaffolds for Tissue Engineering; 1.1 Introduction; 1.2 Collagen Sponges; 1.3 Collagen Sponges with Micropatterned Pore Structures; 1.4 Collagen Sponges with Controlled Bulk Structures; 1.5 Hybrid Scaffolds; 1.6 Conclusions; References; 2 Marine Collagen Isolation and Processing Envisaging Biomedical Applications; 2.1 Introduction; 2.2 Extraction of Collagen From Marine Sources; 2.2.1 Extraction of Collagen from Fish, Jellyfish and Molluscs
2.2.2 Extraction of Collagen from Other Sources: Marine Sponges2.3 Collagen Characterization; 2.3.1 Fourier Transform InfraRed Spectroscopy (FTIR); 2.3.2 Differential Scanning Calorimetry (DSC); 2.3.3 Circular Dichroism (CD); 2.3.4 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE); 2.3.5 Amino Acid Analysis ; 2.4 Marine Collagen Wide Applications; 2.4.1 Marine Collagen-Based Biomaterials Properties; 2.4.2 Marine Collagen Applications in Tissue Engineering; 2.4.3 Other Tissue Engineering Applications; 2.5 Final Remarks; Acknowledgements; References 3 Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering3.1 Introduction; 3.2 Crosslinking of Gelatin; 3.3 Physical Properties of Gelatin; 3.4 Application of Gelatin-Based Biomaterials In Tissue Engineering; 3.4.1 Cardiovascular Tissue Engineering; 3.4.2 Bone Tissue Engineering; 3.4.3 Hepatic Tissue Engineering; 3.4.4 Ophthalmology; 3.4.5 Dermatology ; 3.4.6 Miscellaneous Applications ; 3.5 Gelatin for Stem Cell Therapy; 3.5.1 Embryonic Stem Cells; 3.5.2 Adult Stem Cells; 3.5.3 Induced Pluripotent Stem Cells; 3.6 Application of Gelatin In Delivery Systems 3.7 Conclusion and PerspectivesAcknowledgements; Abbreviations; References; 4 Hyaluronic Acid-Based Hydrogels on a Micro and Macro Scale; 4.1 Classification and Structure of Hydrogels; 4.2 Hyaluronic Acid; 4.3 Hydrogel Mechanical Properties; 4.3.1 Dynamic Mechanical Analysis; 4.3.2 Stress Strain Behavior; 4.4 HA-Based Hydrogel for Biomedical Applications; 4.4.1 Regenerative Medicine; 4.4.2 Drug Delivery; References; 5 Chondroitin Sulfate as a Bioactive Macromolecule for Advanced Biological Applications and Therapies; 5.1 CS Structure; 5.2 Biological Roles of CS; 5.3 Osteoarthritis Treatment 5.4 Cardio-Cerebrovascular Disease5.5 Tissue Regeneration and Engineering; 5.6 Chondroitin Sulfate-Polymer Conjugates; 5.7 Conclusions and Future Perspectives; References; 6 Keratin; 6.1 Introduction; 6.2 Preparation of Keratoses; 6.3 Preparation of Kerateines; 6.4 Oxidative Sulfitolysis; 6.5 Summary; References; 7 Elastin-Like Polypeptides: Bio-Inspired Smart Polymers for Protein Purification, Drug Delivery and Tissue Engineering; 7.1 Introduction; 7.2 Recombinant Protein Production Using ELPs as Purification Tags; 7.2.1 ELP Expression; 7.2.2 ELP Purification; 7.2.3 Tag Removal 7.2.4 Biological Evaluation of Purified Protein |
Record Nr. | UNINA-9910810893503321 |
Hoboken, New Jersey : , : Wiley, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microfluidics and biosensors in cancer research : applications in cancer modeling and theranostics / / David Caballero, Subhas C. Kundu, and Rui L. Reis, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (598 pages) : illustrations |
Disciplina | 610.28 |
Collana | Advances in experimental medicine and biology |
Soggetto topico |
Biosensors
Cancer - Research Microfluidics |
ISBN | 3-031-04039-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910733712203321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multifunctional hydrogels for biomedical applications / / edited by Ricardo A. Pires, Iva Pashkuleva, Rui L. Reis |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] |
Descrizione fisica | 1 online resource (381 pages) |
Disciplina | 610.28 |
Soggetto topico | Biomedical engineering |
ISBN |
3-527-82582-7
3-527-82581-9 3-527-82583-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Extracellular Matrix Hydrogels from Decellularized Tissues for Biological and Biomedical Applications -- 1.1 Introduction to Hydrogels -- 1.1.1 Definition and Use of Hydrogels in Biomedical Applications -- 1.1.2 Classification and Properties of Hydrogels -- 1.1.2.1 Synthetic Hydrogels -- 1.1.2.2 Natural Hydrogels -- 1.2 Key Features and Functions of the Extracellular Matrix in Homeostasis and Development -- 1.3 Extracellular Matrix‐Based Hydrogels Derived from Decellularization of Organs -- 1.3.1 Production of ECM Hydrogels -- 1.3.2 Characterization of ECM Hydrogels -- 1.3.3 Pancreatic ECM‐Derived Hydrogels -- 1.3.4 ECM Hydrogels Derived from Liver -- 1.3.5 Lung ECM Hydrogels -- 1.3.6 Hydrogels Derived from Decellularized Colon -- 1.3.7 ECM‐Derived Hydrogels from Small Intestine -- 1.3.8 Cellular Responses to ECM Hydrogels -- 1.4 Commercially Available Products -- References -- Chapter 2 Collagen‐Based Systems to Mimic the Extracellular Environment -- 2.1 Cells in Tissues -- 2.2 Collagen in Tissues -- 2.2.1 Structure of Collagen -- 2.2.2 Collagen Sources -- 2.3 Controlling Collagen Architecture -- 2.3.1 Direction: Collagen Orientation -- 2.3.2 Diameter: Collagen Fibril Diameter -- 2.3.3 Density: Fibril Packing and Cross‐Linking -- 2.4 Engineering Collagen Scaffolds -- 2.4.1 Collagen Cross‐Linking -- 2.4.2 Diffusion of Nutrients and Oxygen Through Collagen Scaffolds -- 2.4.3 Proliferation of Cells in 3D -- 2.4.4 Mechanical Stimulation and Bioreactors -- 2.4.5 Growth Factors -- 2.4.6 Drug‐Loaded Scaffolds -- 2.5 Conclusions -- References -- Chapter 3 Designing Elastin‐Like Recombinamers for Therapeutic and Regenerative Purposes -- 3.1 Introduction -- 3.2 ELR‐Based Hydrogels in Tissue Engineering -- 3.2.1 Hydrogels in Musculoskeletal Tissue Regeneration.
3.2.2 Hydrogels in Cardiovascular Tissue Regeneration -- 3.2.3 Hydrogels in Skin Tissue Regeneration -- 3.2.4 Hydrogels in Neural Tissue Regeneration -- 3.3 ELR‐Based Hydrogels for Drug Delivery -- 3.3.1 Physically Cross‐Linked Hydrogels -- 3.3.2 Chemically Cross‐Linked Hydrogels -- 3.4 Future Remarks -- References -- Chapter 4 Enzyme‐Assisted Hydrogel Formation for Tissue Engineering Applications -- 4.1 Introduction -- 4.2 Enzymatically Cross‐Linked Hydrogels -- 4.2.1 Oxidoreductases -- 4.2.1.1 Peroxidases - HRP -- 4.2.1.2 Tyrosinase -- 4.2.1.3 Laccase -- 4.2.2 Transferases: Transglutaminase -- 4.3 Supramolecular Enzyme‐Driven Hydrogelation -- 4.3.1 Hydrolases -- 4.3.1.1 Phosphatases -- 4.3.1.2 Metalloproteinases -- 4.3.1.3 Thermolysin -- 4.3.1.4 β‐Lactamases -- 4.3.2 DNA Polymerases -- 4.4 Conclusions -- References -- Chapter 5 Hierarchical Peptide‐ and Protein‐Based Biomaterials: From Molecular Structure to Directed Self‐assembly and Applications -- 5.1 Introduction -- 5.2 Molecular Design/Selection of Building Blocks for Hierarchical Self‐assembly -- 5.2.1 Hydrophobic Aromatic Amino Acids -- 5.2.2 Hydrophobic Aliphatic Amino Acids -- 5.2.3 Hydrophilic Charged Amino Acids -- 5.2.4 Others -- 5.3 Hierarchical Assembly Through Environmental Manipulation -- 5.3.1 Temperature -- 5.3.2 Magnetic Field -- 5.3.3 Electric Field -- 5.3.4 Patterned Substrates -- 5.3.5 Shear Forces -- 5.3.6 pH -- 5.3.7 Ultrasound -- 5.3.8 Other Methods -- 5.4 Techniques for the Characterization of Hierarchically Organized Biomaterials -- 5.4.1 Polarized Light Microscopy -- 5.4.2 High‐Resolution Microscopy (AFM, TEM, and SEM) -- 5.4.3 Small‐Angle X‐ray Scattering (SAXS) -- 5.5 Application of Hierarchical Self‐assembling Peptide‐ and Protein‐Based Biomaterials in Tissue Regeneration -- 5.5.1 Cornea -- 5.5.2 Blood Vessels -- 5.5.3 Skeletal Muscle -- 5.6 Conclusions. Acknowledgments -- References -- Chapter 6 Short Peptide Hydrogels for Biomedical Applications -- 6.1 Introduction -- 6.2 Short Peptide Hydrogels -- 6.2.1 Fmoc‐Protected Short Peptides -- 6.2.2 Short Peptide Hydrogels with Alternating Hydrophobic/Hydrophilic Amino Acid Residues -- 6.2.3 β‐Hairpin Peptides -- 6.2.4 Acetyl‐Protected Short Peptides -- 6.3 Biomedical Applications of Short Peptide Hydrogels -- 6.3.1 2D/3D Cell Scaffolding -- 6.3.2 Tissue Engineering -- 6.3.3 Wound Healing -- 6.3.4 Drug Delivery -- 6.4 Conclusions and Outlook -- References -- Chapter 7 Supramolecular Assemblies of Glycopeptides as Mimics of the Extracellular Matrix -- 7.1 Introduction -- 7.2 Glycoproteins and Proteoglycans in the ECM -- 7.3 Design of Self‐assembling Peptide-Saccharide Conjugates -- 7.4 Supramolecular Systems Generated by Interfacial Co‐assembly -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Supramolecular Assemblies for Cancer Diagnosis and Treatment -- 8.1 Introduction -- 8.2 Cancer Diagnosis -- 8.2.1 Optical Imaging -- 8.2.2 Magnetic Resonance Imaging (MRI) -- 8.2.3 Photoacoustic Imaging -- 8.3 Cancer Treatment -- 8.3.1 Drug Delivery -- 8.3.2 Enzyme‐Instructed Self‐assembly (EISA for Cancer Therapy) -- 8.4 Future Perspectives -- References -- Chapter 9 Polyzwitterionic Hydrogels as Wound Dressing Materials -- 9.1 Polyzwitterions -- 9.1.1 General Structure and Properties -- 9.1.2 Nonfouling Properties -- 9.2 Wound Management and Wound Dressings -- 9.3 PZIs as Dressings Materials for Acute Wounds -- 9.3.1 Polycarboxybetaines (PCBs) -- 9.3.2 Polysulfobetaines -- 9.4 PZI as Dressings for Chronic Wounds Management -- 9.4.1 Dressings for Chronic Wounds Management Based on Polycarboxybetaines -- 9.4.2 Polysulfobetaines as Dressings for Chronic Wounds Management -- 9.5 Conclusions -- References. Chapter 10 Hyaluronan‐Based Hydrogels as Modulators of Cellular Behavior -- 10.1 Introduction -- 10.2 Biological Relevance of Hyaluronan -- 10.2.1 Hyaluronan in Biological Tissues and Fluids -- 10.2.2 Hyaluronan as a Signaling Molecule -- 10.3 Hyaluronan‐Based Systems for Biomedical Applications -- 10.3.1 Hydrogels for Tissue Engineering -- 10.3.1.1 Differentiation of Stem Cells -- 10.3.1.2 Space Filling Hydrogels -- 10.3.2 3D Cancer Models -- 10.4 Conclusion and Future Remarks -- Acknowledgments -- References -- Chapter 11 Hydrogel Fibers Produced via Microfluidics -- 11.1 Introduction to Microfluidics and Microfluidic Wet Spinning -- 11.1.1 Fundamentals of Microfluidics -- 11.1.2 Application of Microfluidics to Fiber Production: Microfluidic Wet Spinning -- 11.2 Fabrication of Chips for Microfluidic Wet Spinning -- 11.3 Biomedical Applications of Hydrogel Fibers Produced via Microfluidics -- 11.3.1 Tissue Engineering -- 11.3.1.1 Single‐Fiber Scaffolds -- 11.3.1.2 Assembled Fiber Scaffolds -- 11.3.2 Sensors and Actuators -- 11.3.2.1 Sensors -- 11.3.2.2 Actuators -- 11.3.3 Controlled Drug Delivery -- 11.3.4 Other Biomedical Applications -- 11.4 Hydrogel Optical Fibers -- 11.4.1 Materials -- 11.4.2 Applications -- 11.5 Conclusions -- Acknowledgments -- References -- Chapter 12 Embedding Hydrogels into Microfluidic Chips: Vascular Transport Analyses and Drug Delivery Optimization -- 12.1 Introduction: Microfluidic Chips for Modeling Human Diseases and Developing New Therapies -- 12.2 Hydrogels to Mimic the Extracellular Matrix (ECM) -- 12.3 Fabrication of Microfluidic Chips -- 12.3.1 Single‐Channel Microfluidic Chips -- 12.3.2 Double‐Channel Microfluidic Chip -- 12.4 Applications of Microfluidic Chips in Biophysical Transport Analysis -- 12.4.1 Single‐Channel Microfluidic Chips -- 12.4.2 Double‐Channel Microfluidic Chips. 12.5 Nanoparticle Transport Analyses -- 12.6 Computer Simulations of Nanoparticle and Cell Transport -- 12.7 Conclusions and Future Directions -- References -- Chapter 13 Multifunctional Granular Hydrogels for Tissue‐Specific Repair -- 13.1 Introduction -- 13.2 Granular Hydrogels - Functional Features and Design -- 13.2.1 Injectability -- 13.2.2 Inter‐particle Annealing Toward MAPs Assembly -- 13.2.3 Void Spaces and Microporosity -- 13.2.4 Modularity and Multifunctionality in Granular Systems -- 13.2.5 Bioactive Molecules Delivery -- 13.3 Granular Hydrogels for Tissue‐Specific Repair -- 13.3.1 Vascularization Strategies -- 13.3.2 Skin Tissues Repair -- 13.3.3 Bone Tissue Repair -- 13.3.4 Emerging Trends and Applications -- 13.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 14 Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing -- 14.1 Wound Healing -- 14.1.1 Clinical Needs for Wound Healing -- 14.1.2 Wound Healing Pathology -- 14.1.2.1 Hemostasis -- 14.1.2.2 Inflammation -- 14.1.2.3 Proliferation -- 14.1.2.4 Remodeling -- 14.2 Stem Cells for Skin Wound Healing -- 14.2.1 Stem Cell Overview -- 14.2.2 Adipose‐Derived Stem Cells for Wound Healing -- 14.2.3 Current Limitations and Future Directions of SCs for Wound Healing -- 14.3 Injectable Hydrogel Dressing as a Delivery Platform -- 14.3.1 Types of Injectable Hydrogels -- 14.3.1.1 Naturally Derived Injectable Hydrogels -- 14.3.1.2 Synthetic Injectable Hydrogels -- 14.3.1.3 Hybrid Injectable Hydrogels -- 14.3.2 Injectable Hydrogels as Scaffolding for Stem Cells Delivery -- References -- Index -- EULA. |
Record Nr. | UNINA-9910573098103321 |
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multifunctional hydrogels for biomedical applications / / edited by Ricardo A. Pires, Iva Pashkuleva, Rui L. Reis |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] |
Descrizione fisica | 1 online resource (381 pages) |
Disciplina | 610.28 |
Soggetto topico | Biomedical engineering |
ISBN |
3-527-82582-7
3-527-82581-9 3-527-82583-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Extracellular Matrix Hydrogels from Decellularized Tissues for Biological and Biomedical Applications -- 1.1 Introduction to Hydrogels -- 1.1.1 Definition and Use of Hydrogels in Biomedical Applications -- 1.1.2 Classification and Properties of Hydrogels -- 1.1.2.1 Synthetic Hydrogels -- 1.1.2.2 Natural Hydrogels -- 1.2 Key Features and Functions of the Extracellular Matrix in Homeostasis and Development -- 1.3 Extracellular Matrix‐Based Hydrogels Derived from Decellularization of Organs -- 1.3.1 Production of ECM Hydrogels -- 1.3.2 Characterization of ECM Hydrogels -- 1.3.3 Pancreatic ECM‐Derived Hydrogels -- 1.3.4 ECM Hydrogels Derived from Liver -- 1.3.5 Lung ECM Hydrogels -- 1.3.6 Hydrogels Derived from Decellularized Colon -- 1.3.7 ECM‐Derived Hydrogels from Small Intestine -- 1.3.8 Cellular Responses to ECM Hydrogels -- 1.4 Commercially Available Products -- References -- Chapter 2 Collagen‐Based Systems to Mimic the Extracellular Environment -- 2.1 Cells in Tissues -- 2.2 Collagen in Tissues -- 2.2.1 Structure of Collagen -- 2.2.2 Collagen Sources -- 2.3 Controlling Collagen Architecture -- 2.3.1 Direction: Collagen Orientation -- 2.3.2 Diameter: Collagen Fibril Diameter -- 2.3.3 Density: Fibril Packing and Cross‐Linking -- 2.4 Engineering Collagen Scaffolds -- 2.4.1 Collagen Cross‐Linking -- 2.4.2 Diffusion of Nutrients and Oxygen Through Collagen Scaffolds -- 2.4.3 Proliferation of Cells in 3D -- 2.4.4 Mechanical Stimulation and Bioreactors -- 2.4.5 Growth Factors -- 2.4.6 Drug‐Loaded Scaffolds -- 2.5 Conclusions -- References -- Chapter 3 Designing Elastin‐Like Recombinamers for Therapeutic and Regenerative Purposes -- 3.1 Introduction -- 3.2 ELR‐Based Hydrogels in Tissue Engineering -- 3.2.1 Hydrogels in Musculoskeletal Tissue Regeneration.
3.2.2 Hydrogels in Cardiovascular Tissue Regeneration -- 3.2.3 Hydrogels in Skin Tissue Regeneration -- 3.2.4 Hydrogels in Neural Tissue Regeneration -- 3.3 ELR‐Based Hydrogels for Drug Delivery -- 3.3.1 Physically Cross‐Linked Hydrogels -- 3.3.2 Chemically Cross‐Linked Hydrogels -- 3.4 Future Remarks -- References -- Chapter 4 Enzyme‐Assisted Hydrogel Formation for Tissue Engineering Applications -- 4.1 Introduction -- 4.2 Enzymatically Cross‐Linked Hydrogels -- 4.2.1 Oxidoreductases -- 4.2.1.1 Peroxidases - HRP -- 4.2.1.2 Tyrosinase -- 4.2.1.3 Laccase -- 4.2.2 Transferases: Transglutaminase -- 4.3 Supramolecular Enzyme‐Driven Hydrogelation -- 4.3.1 Hydrolases -- 4.3.1.1 Phosphatases -- 4.3.1.2 Metalloproteinases -- 4.3.1.3 Thermolysin -- 4.3.1.4 β‐Lactamases -- 4.3.2 DNA Polymerases -- 4.4 Conclusions -- References -- Chapter 5 Hierarchical Peptide‐ and Protein‐Based Biomaterials: From Molecular Structure to Directed Self‐assembly and Applications -- 5.1 Introduction -- 5.2 Molecular Design/Selection of Building Blocks for Hierarchical Self‐assembly -- 5.2.1 Hydrophobic Aromatic Amino Acids -- 5.2.2 Hydrophobic Aliphatic Amino Acids -- 5.2.3 Hydrophilic Charged Amino Acids -- 5.2.4 Others -- 5.3 Hierarchical Assembly Through Environmental Manipulation -- 5.3.1 Temperature -- 5.3.2 Magnetic Field -- 5.3.3 Electric Field -- 5.3.4 Patterned Substrates -- 5.3.5 Shear Forces -- 5.3.6 pH -- 5.3.7 Ultrasound -- 5.3.8 Other Methods -- 5.4 Techniques for the Characterization of Hierarchically Organized Biomaterials -- 5.4.1 Polarized Light Microscopy -- 5.4.2 High‐Resolution Microscopy (AFM, TEM, and SEM) -- 5.4.3 Small‐Angle X‐ray Scattering (SAXS) -- 5.5 Application of Hierarchical Self‐assembling Peptide‐ and Protein‐Based Biomaterials in Tissue Regeneration -- 5.5.1 Cornea -- 5.5.2 Blood Vessels -- 5.5.3 Skeletal Muscle -- 5.6 Conclusions. Acknowledgments -- References -- Chapter 6 Short Peptide Hydrogels for Biomedical Applications -- 6.1 Introduction -- 6.2 Short Peptide Hydrogels -- 6.2.1 Fmoc‐Protected Short Peptides -- 6.2.2 Short Peptide Hydrogels with Alternating Hydrophobic/Hydrophilic Amino Acid Residues -- 6.2.3 β‐Hairpin Peptides -- 6.2.4 Acetyl‐Protected Short Peptides -- 6.3 Biomedical Applications of Short Peptide Hydrogels -- 6.3.1 2D/3D Cell Scaffolding -- 6.3.2 Tissue Engineering -- 6.3.3 Wound Healing -- 6.3.4 Drug Delivery -- 6.4 Conclusions and Outlook -- References -- Chapter 7 Supramolecular Assemblies of Glycopeptides as Mimics of the Extracellular Matrix -- 7.1 Introduction -- 7.2 Glycoproteins and Proteoglycans in the ECM -- 7.3 Design of Self‐assembling Peptide-Saccharide Conjugates -- 7.4 Supramolecular Systems Generated by Interfacial Co‐assembly -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Supramolecular Assemblies for Cancer Diagnosis and Treatment -- 8.1 Introduction -- 8.2 Cancer Diagnosis -- 8.2.1 Optical Imaging -- 8.2.2 Magnetic Resonance Imaging (MRI) -- 8.2.3 Photoacoustic Imaging -- 8.3 Cancer Treatment -- 8.3.1 Drug Delivery -- 8.3.2 Enzyme‐Instructed Self‐assembly (EISA for Cancer Therapy) -- 8.4 Future Perspectives -- References -- Chapter 9 Polyzwitterionic Hydrogels as Wound Dressing Materials -- 9.1 Polyzwitterions -- 9.1.1 General Structure and Properties -- 9.1.2 Nonfouling Properties -- 9.2 Wound Management and Wound Dressings -- 9.3 PZIs as Dressings Materials for Acute Wounds -- 9.3.1 Polycarboxybetaines (PCBs) -- 9.3.2 Polysulfobetaines -- 9.4 PZI as Dressings for Chronic Wounds Management -- 9.4.1 Dressings for Chronic Wounds Management Based on Polycarboxybetaines -- 9.4.2 Polysulfobetaines as Dressings for Chronic Wounds Management -- 9.5 Conclusions -- References. Chapter 10 Hyaluronan‐Based Hydrogels as Modulators of Cellular Behavior -- 10.1 Introduction -- 10.2 Biological Relevance of Hyaluronan -- 10.2.1 Hyaluronan in Biological Tissues and Fluids -- 10.2.2 Hyaluronan as a Signaling Molecule -- 10.3 Hyaluronan‐Based Systems for Biomedical Applications -- 10.3.1 Hydrogels for Tissue Engineering -- 10.3.1.1 Differentiation of Stem Cells -- 10.3.1.2 Space Filling Hydrogels -- 10.3.2 3D Cancer Models -- 10.4 Conclusion and Future Remarks -- Acknowledgments -- References -- Chapter 11 Hydrogel Fibers Produced via Microfluidics -- 11.1 Introduction to Microfluidics and Microfluidic Wet Spinning -- 11.1.1 Fundamentals of Microfluidics -- 11.1.2 Application of Microfluidics to Fiber Production: Microfluidic Wet Spinning -- 11.2 Fabrication of Chips for Microfluidic Wet Spinning -- 11.3 Biomedical Applications of Hydrogel Fibers Produced via Microfluidics -- 11.3.1 Tissue Engineering -- 11.3.1.1 Single‐Fiber Scaffolds -- 11.3.1.2 Assembled Fiber Scaffolds -- 11.3.2 Sensors and Actuators -- 11.3.2.1 Sensors -- 11.3.2.2 Actuators -- 11.3.3 Controlled Drug Delivery -- 11.3.4 Other Biomedical Applications -- 11.4 Hydrogel Optical Fibers -- 11.4.1 Materials -- 11.4.2 Applications -- 11.5 Conclusions -- Acknowledgments -- References -- Chapter 12 Embedding Hydrogels into Microfluidic Chips: Vascular Transport Analyses and Drug Delivery Optimization -- 12.1 Introduction: Microfluidic Chips for Modeling Human Diseases and Developing New Therapies -- 12.2 Hydrogels to Mimic the Extracellular Matrix (ECM) -- 12.3 Fabrication of Microfluidic Chips -- 12.3.1 Single‐Channel Microfluidic Chips -- 12.3.2 Double‐Channel Microfluidic Chip -- 12.4 Applications of Microfluidic Chips in Biophysical Transport Analysis -- 12.4.1 Single‐Channel Microfluidic Chips -- 12.4.2 Double‐Channel Microfluidic Chips. 12.5 Nanoparticle Transport Analyses -- 12.6 Computer Simulations of Nanoparticle and Cell Transport -- 12.7 Conclusions and Future Directions -- References -- Chapter 13 Multifunctional Granular Hydrogels for Tissue‐Specific Repair -- 13.1 Introduction -- 13.2 Granular Hydrogels - Functional Features and Design -- 13.2.1 Injectability -- 13.2.2 Inter‐particle Annealing Toward MAPs Assembly -- 13.2.3 Void Spaces and Microporosity -- 13.2.4 Modularity and Multifunctionality in Granular Systems -- 13.2.5 Bioactive Molecules Delivery -- 13.3 Granular Hydrogels for Tissue‐Specific Repair -- 13.3.1 Vascularization Strategies -- 13.3.2 Skin Tissues Repair -- 13.3.3 Bone Tissue Repair -- 13.3.4 Emerging Trends and Applications -- 13.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 14 Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing -- 14.1 Wound Healing -- 14.1.1 Clinical Needs for Wound Healing -- 14.1.2 Wound Healing Pathology -- 14.1.2.1 Hemostasis -- 14.1.2.2 Inflammation -- 14.1.2.3 Proliferation -- 14.1.2.4 Remodeling -- 14.2 Stem Cells for Skin Wound Healing -- 14.2.1 Stem Cell Overview -- 14.2.2 Adipose‐Derived Stem Cells for Wound Healing -- 14.2.3 Current Limitations and Future Directions of SCs for Wound Healing -- 14.3 Injectable Hydrogel Dressing as a Delivery Platform -- 14.3.1 Types of Injectable Hydrogels -- 14.3.1.1 Naturally Derived Injectable Hydrogels -- 14.3.1.2 Synthetic Injectable Hydrogels -- 14.3.1.3 Hybrid Injectable Hydrogels -- 14.3.2 Injectable Hydrogels as Scaffolding for Stem Cells Delivery -- References -- Index -- EULA. |
Record Nr. | UNINA-9910831087703321 |
Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Polysaccharides of microbial origin : biomedical applications / / edited by Joaquim Miguel Oliveira, Hajer Radhouani and Rui L. Reis |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (1289 pages) |
Disciplina | 616.9041 |
Soggetto topico |
Microbial polysaccharides
Medical microbiology |
ISBN | 3-030-42215-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- Contributors -- 1 Introduction -- 1 Context -- References -- Part I: Bacterial Polysaccharides -- 2 Glucans -- 1 Introduction -- 2 Glucans and the Immune System: Firsts Experiments -- 3 Immune Responses -- 3.1 Basis of the Immune Response to Polysaccharides -- 3.2 Dectin-1 Receptor -- 3.2.1 Other Dectin-1 Triggers -- 3.3 Glucan as Immunoadjuvant -- 3.3.1 Oral Administration -- 4 Final Considerations -- References -- 3 Levan -- 1 Introduction -- 2 Extraction, Isolation, Purification and Production Advanced Processes -- 2.1 Production by Fermentation -- 2.2 Enzymatic Production -- 3 Structural, Physicochemical, and Biological Properties -- 3.1 Structural Properties -- 3.2 Rheology -- 3.3 Degree of Branching -- 3.4 Molecular Weight -- 3.5 Adhesive -- 3.6 Anti-Inflammatory and Antioxidant Activity -- 3.7 Immunostimulant -- 3.8 Description of the Advanced Functionalization and Modification Methods -- 4 Applications and Uses in Medical and Pharmaceutical Fields -- 4.1 Healing Damaged Tissue -- 4.2 Cholesterol -- 4.3 Diabetes -- 4.4 Anticancer Activity -- 4.5 Calcium Absorption -- 4.6 Toxicity Decrease -- 4.7 Antimicrobial -- 4.8 Ulcer Treatment -- 4.9 Pharmaceuticals -- 5 Conclusions -- References -- 4 Gums -- 1 Introduction -- 2 Production of Microorganism Gums -- 3 Antimicrobial Properties -- 4 Antioxidant Action -- 5 Anticancer Activity -- 6 Healing Capacity -- 7 Drug Delivery -- 8 Challenges in Microbial Gums -- 9 Conclusions -- References -- 5 The Promise and Challenge of Microbial Alginate Production: A Product with Novel Applications -- 1 Introduction -- 2 Biosynthesis of Alginates and Their Biological Functions in Producing Bacteria -- 2.1 Postpolymerization Modification of Alginate -- 2.2 Biological Role of Alginate Production.
3 Industrial Production of Microbial Alginate: Challenges and Opportunities -- 3.1 Technical Challenges in Alginate Production from A. vinelandii -- 3.2 Nonpathogenic Strains of Pseudomonas as Promising Alginate Producers -- 4 Applications of Alginate in Food, Pharmaceutical, and Biomedical Sectors -- 4.1 Alginate Applications in Food Sectors -- 4.2 Pharmaceutical and Biomedical Applications of Alginate -- 5 Conclusion -- References -- 6 Kefiran -- 1 Introduction -- 2 Kefiran from Kefir Grains and Kefir -- 3 Kefiran Structure -- 4 Kefiran from Microorganisms Isolated from Kefir Grains -- 5 Kefiran Production for Industrial Application -- 6 Biological Activity of Kefiran -- 6.1 Antimicrobial Activity -- 6.2 Bifidogenic Activity -- 6.3 Modulation of Immune and Inflammatory Response -- 6.4 Antitumoral -- 6.5 Other Biological Activities -- 7 Physicochemical and Functional Properties of Kefiran -- 7.1 Kefiran as Thickener Agent -- 7.2 Kefiran Gels -- 7.3 Kefiran-Based Films -- 7.4 Kefiran in Emulsions -- 8 Biomedical Application of Kefiran -- 9 Conclusion -- References -- 7 Microbial Glucuronans and Succinoglycans -- 1 Introduction -- 2 Glucuronans -- 2.1 Sources and Structures of Microbial Glucuronans (GP) -- 2.2 Enzymatically and Chemically Oxidized Glucans -- 2.3 Enzymes Acting on Glucuronans -- 3 Succinoglycans -- 3.1 Sources and Structures of Microbial Succinoglycans -- 3.2 Enzymes Acting on Succinoglycan -- 4 Rheology of Glucuronan and Succinoglycan -- 5 Conclusions -- References -- 8 Cyanobacterial Extracellular Polymeric Substances (EPS) -- 1 Introduction -- 2 Cyanobacterial Extracellular Polymeric Substances (EPS) and Their Biological Roles -- 3 Biosynthesis -- 3.1 First Steps and Modification Enzymes -- 3.2 Assembly and Export -- 3.3 Regulatory Mechanisms -- 4 Optimization of Production and Isolation Procedures -- 5 Composition and Structure. 5.1 Tailoring -- 6 Biotechnological Applications -- 6.1 Water Treatment and Soil Conditioning -- 6.2 Food, Personal Care, and Other Industries -- 6.3 Biomedical -- 7 Conclusions and Future Perspectives -- References -- 9 Glycosaminoglycans -- 1 Introduction -- 2 Structural Features -- 2.1 Heparin (HEP) and Heparan Sulfate (HPS) -- 2.2 Chondroitin Sulfate (CS) and Dermatan Sulfate (DS) -- 2.3 Keratan Sulfate (KS) -- 2.4 Hyaluronan/Hyaluronic Acid (HA) -- 3 Biosynthesis -- 4 Industrial Production of GAGs -- 5 Bacterial Production of GAGs -- 5.1 Bacterial Hyaluronan -- 5.2 Bacterial Chondroitin -- 5.3 Bacterial Heparosan -- 6 Properties and Clinical Applications -- 6.1 Hyaluronan -- 6.2 Chondroitin Sulfate and Dermatan Sulfate -- 6.3 Heparin and Heparan Sulfate -- 6.4 Keratan Sulfate -- 7 Conclusions and Future Trends -- References -- Part II: Fungal and Microalgal Polysaccharides -- 10 Botryosphaeran -- 1 Introduction -- 2 Chemical Structure of Botryosphaeran -- 2.1 A Family of Botryosphaerans -- 2.2 Sulfonylation of Botryosphaeran: Anticoagulant and Antiviral Activities -- 3 Antimutagenicity and Chemopreventive Effect of Botryosphaeran -- 4 Anti-Obesogenic Activity of Botryosphaeran -- 5 Hypoglycemia and Hypocholesterolemia Exhibited by Botryosphaeran -- 5.1 Improving the Diabetic Condition -- 5.2 Improving the Dyslipidemic Condition -- 6 Anticancer Activity of Botryosphaeran -- 7 Conclusion and Future Perspectives -- References -- 11 Chitin and Its Derivatives -- 1 Introduction -- 2 Chitin Extraction and Structure -- 3 Chitin and Chitosan Properties -- 4 Chitin and Chitosan-Based Matrices: Processability and Chemical Modification -- 5 Biomedical Applications of Chitin and its Derivatives -- 5.1 Skin Regeneration -- 5.2 Bone Repair -- 5.3 Cartilage Regeneration -- 5.4 Infectious Diseases -- 6 Conclusions -- References -- 12 Chitosan. 1 Fungi Chitosan -- 1.1 Production -- 1.2 Extraction and Isolation -- 1.3 Purification and Production Advanced Processes -- 2 Biochemical and Biological Characteristics -- 2.1 Physicochemical Properties -- 2.1.1 Degree of Deacetylation -- 2.2 Biological Properties -- 3 Biotechnology Applications -- 3.1 Applications and Uses in the Pharmaceutical Industry -- 3.2 Applications and Uses in Biomedical Fields -- 4 Conclusion -- References -- 13 An Insight into Pullulan and Its Potential Applications -- 1 Introduction -- 2 Physicochemical Properties of Pullulan -- 3 Fermentative Production of Pullulan -- 3.1 Microbial Sources of Pullulan -- 3.2 Mechanism of Pullulan Synthesis -- 3.3 Upstream and Downstream Processing for Pullulan -- 3.4 Factors Influencing Pullulan Production -- 3.4.1 Fermentation Media Supplements -- Carbon Source -- Nitrogen Source -- Supplements -- 3.4.2 Fermentation Type -- 3.4.3 Bioreactor Configuration and Operation -- 3.4.4 Fermentation Time -- 3.4.5 Microbial Culture -- 3.4.6 Oxygen Intensity -- 3.4.7 pH -- 3.4.8 Temperature -- 4 Characterization of Pullulan -- 4.1 Structural Characterization -- 4.2 Molecular Weight -- 4.3 Thermal and Mechanical Properties -- 5 Surface Derivatization Approaches for Pullulan -- 5.1 Polyionic Derivatives -- 5.2 Cross-Linking -- 5.3 Hydrophobic Modification -- 5.4 Grafting -- 6 Recent Applications and Uses in Biomedical and Pharmaceutical Fields -- 6.1 Pharmaceutical Formulations -- 6.2 Tissue Engineering -- 6.3 Targeted Drug Delivery -- 6.4 Gene Delivery -- 7 Future Perspectives -- 8 Conclusion -- References -- 14 Scleroglucan and Schizophyllan -- 1 Introduction -- 2 Structural Description -- 3 Physicochemical Aspects -- 3.1 Properties of Scleroglucan -- 3.1.1 Properties of Scleroglucan Aqueous Solutions -- 3.1.2 Rheological Properties of Scleroglucan -- 3.1.3 Physiological Properties of Scleroglucan. 3.2 Properties of Schizophyllan -- 3.2.1 Properties of Dilute Schizophyllan Solutions -- 3.2.2 Behavior of Concentrated Schizophyllan Solutions -- 3.2.3 Gelation Behavior of Schizophyllan -- 4 Production and Isolation of Scleroglucan and Schizophyllan -- 4.1 Production and Isolation of Scleroglucan -- 4.1.1 Biosynthesis of Scleroglucan -- 4.1.2 Fermentation Conditions for Scleroglucan Production -- 4.1.3 Downstream Processing for Recovery of Scleroglucan -- 4.2 Production and Isolation of Schizophyllan -- 5 Applications for Scleroglucan and Schizophyllan -- 5.1 Applications in the Food Industry -- 5.1.1 As Stabilizers, Viscosifiers/Thickeners, and Gelling Agents -- 5.1.2 Preparation of Edible Films -- 5.1.3 Production of Functional Foods -- 5.2 Biomedical/Pharmaceutical Applications -- 5.2.1 As Immunostimulants in Anticancer Activities -- 5.2.2 As Immunomodulators in Antitumor Activities -- 5.2.3 As Antiviral and Antimicrobial Agents -- 5.2.4 Hypocholesterolemic and Hypoglycemic Effects -- 5.2.5 Excipients -- 5.2.6 As Carriers for Targeted Delivery of Drugs and Bioactive Compounds -- 6 Conclusion/Perspectives -- References -- 15 Sulfated Seaweed Polysaccharides -- 1 Introduction -- 2 Sulfated Polysaccharides: Their Properties -- 2.1 Fucoidan -- 2.2 Carrageenan -- 2.3 Agar -- 2.4 Ulvan -- 3 Bioactive/Biological Properties of Sulfated Polysaccharides -- 3.1 Fucoidan -- 3.2 Carrageenan -- 3.3 Agar -- 3.4 Ulvan -- 4 Biomedical Application -- 4.1 Fucoidan -- 4.2 Carrageenan -- 4.3 Agar -- 4.4 Ulvan -- 5 Conclusions and Final Remarks -- References -- 16 Polysaccharides Produced by Microalgae -- 1 Introduction -- 2 General Structures of Polysaccharides from Commercial Microalgae -- 3 Commercial Microalgae -- 3.1 Species -- 3.2 Spirulina -- 3.3 Chlorella -- 3.4 Nannochloropsis -- 3.5 Tetraselmis -- 3.6 Isochrysis -- 3.7 Thalassiosira -- 3.8 Dunaliella. 3.9 Phaeodactylum. |
Record Nr. | UNINA-9910551826803321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Tendon regeneration : understanding tissue physiology and development to engineer functional substitutes / / edited by Manuela E. Gomes, Rui L. Reis, Marcia T. Rodrigues |
Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Academic Press, , 2015 |
Descrizione fisica | 1 online resource (471 p.) |
Disciplina | 636.10897474044 |
Soggetto topico |
Tendons
Tendons - Wounds and injuries - Healing |
ISBN | 0-12-801600-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; TENDON REGENERATION; Copyright; CONTENTS; CONTRIBUTORS; PREFACE; SECTION 1 - Biology and Physiologyof Tendons; Chapter 1 - Tendon Physiology and Mechanical Behavior: Structure-Function Relationships; 1. TENDON STRUCTURE AND COMPOSITION; 2. TENDON MECHANICS; 3. MULTISCALE MECHANICS AND STRUCTURE-FUNCTION CHARACTERIZATION; 4. MECHANICAL AND COMPOSITIONAL VARIATIONS IN TENDONS WITH DIFFERENT FUNCTIONS; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; Chapter 2 - Tendon Resident Cells-Functions and Features in Section I-Developmental Biology and Physiology of Tendons; 1. INTRODUCTION
2. TENDON CELLS-ORIGIN AND SPECIFICATION3. TENDON CELLS-ECM SYNTHESIS, ASSEMBLY, AND TISSUE MATURATION; 4. CELL-ECM INTERACTIONS; 5. MECHANOREGULATION OF TENDON CELLS; 6. CONCLUSION; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; Chapter 3 - Mechanobiology of Embryonic and Adult Tendons; 1. INTRODUCTION; 2. EMBRYONIC TENDON; 3. POSTNATAL TENDON; 4. MECHANICAL CUES EXPERIENCED BY EMBRYONIC, POSTNATAL, AND ADULT TENDONS; 5. STUDIES IN THE EMBRYO SUGGEST MECHANICAL FACTORS INFLUENCE EMBRYONIC TENDON DEVELOPMENT; 6. IN VITRO STUDIES SUGGEST MECHANICAL FACTORS INFLUENCE EMBRYONIC TENDON DEVELOPMENT 7. EXERCISE STUDIES EXAMINE THE INFLUENCE OF MECHANICS IN ADULT TENDON8. IN VITRO STUDIES SUGGEST MECHANICAL FACTORS INFLUENCE ADULT TENDON HOMEOSTASIS; 9. POTENTIAL MECHANISMS OF TENDON CELL MECHANOTRANSDUCTION; 10. CONCLUSIONS; LIST OF ABBREVIATIONS; REFERENCES; SECTION 2 - Pathologies and Repairof Tendons; Chapter 4 - Tendinopathy I: Understanding Epidemiology, Pathology, Healing, and Treatment; 1. INTRODUCTION; 2. ANATOMICAL DIAGNOSIS; 3. PATHOLOGY; 4. EPIDEMIOLOGY; 5. PATHOPHYSIOLOGY; 6. HEALING AND REPAIR; 7. NONSURGICAL TREATMENT; 8. SURGICAL TREATMENT; 9. CONCLUSION LIST OF ABBREVIATIONSGLOSSARY; REFERENCES; Chapter 5 - Tendinopathy II: Etiology, Pathology, and Healing of Tendon Injury and Disease; 1. EPIDEMIOLOGY; 2. DEFINITIONS; 3. TENDINOPATHY ETIOLOGY; 4. PATHOLOGY; 5. SUMMARY AND CONCLUSIONS; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; SECTION 3 - Tendon Regenerative Medicine Approaches; Chapter 6 - Cell-Based Approaches for Tendon Regeneration; 1. INTRODUCTION; 2. TENDON ENDOGENOUS REGENERATION; 3. ISOLATION PROCEDURES OF TENDON RESIDENT CELLS; 4. ALTERNATIVE STEM CELLS SOURCES FOR CELL-BASED TENDON TISSUE ENGINEERING 5. MOVING CELL THERAPIES INTO THE CLINICS6. CONCLUSION; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; Chapter 7 - The Role of Growth Factors in Tendon Stimulation; 1. INTRODUCTION; 2. GROWTH FACTORS; 3. PLATELET-RICH PLASMA; 4. CONCLUSIONS; LIST OF ABBREVIATIONS; REFERENCES; SECTION 4 - Scaffolds-Based Approaches; Chapter 8 - Engineering Anisotropic 2D and 3D Structures for Tendon Repair and Regeneration; 1. INTRODUCTION; 2. ANISOTROPIC SPONGES; 3. ANISOTROPIC SELF-ASSEMBLED FIBERS; 4. ANISOTROPIC ELECTROSPUN FIBERS; 5. ANISOTROPIC IMPRINTED SUBSTRATES; 6. CONCLUSIVE REMARKS LIST OF ABBREVIATIONS |
Record Nr. | UNINA-9910798073203321 |
Amsterdam, [Netherlands] : , : Academic Press, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Tendon regeneration : understanding tissue physiology and development to engineer functional substitutes / / edited by Manuela E. Gomes, Rui L. Reis, Marcia T. Rodrigues |
Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Academic Press, , 2015 |
Descrizione fisica | 1 online resource (471 p.) |
Disciplina | 636.10897474044 |
Soggetto topico |
Tendons
Tendons - Wounds and injuries - Healing |
ISBN | 0-12-801600-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; TENDON REGENERATION; Copyright; CONTENTS; CONTRIBUTORS; PREFACE; SECTION 1 - Biology and Physiologyof Tendons; Chapter 1 - Tendon Physiology and Mechanical Behavior: Structure-Function Relationships; 1. TENDON STRUCTURE AND COMPOSITION; 2. TENDON MECHANICS; 3. MULTISCALE MECHANICS AND STRUCTURE-FUNCTION CHARACTERIZATION; 4. MECHANICAL AND COMPOSITIONAL VARIATIONS IN TENDONS WITH DIFFERENT FUNCTIONS; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; Chapter 2 - Tendon Resident Cells-Functions and Features in Section I-Developmental Biology and Physiology of Tendons; 1. INTRODUCTION
2. TENDON CELLS-ORIGIN AND SPECIFICATION3. TENDON CELLS-ECM SYNTHESIS, ASSEMBLY, AND TISSUE MATURATION; 4. CELL-ECM INTERACTIONS; 5. MECHANOREGULATION OF TENDON CELLS; 6. CONCLUSION; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; Chapter 3 - Mechanobiology of Embryonic and Adult Tendons; 1. INTRODUCTION; 2. EMBRYONIC TENDON; 3. POSTNATAL TENDON; 4. MECHANICAL CUES EXPERIENCED BY EMBRYONIC, POSTNATAL, AND ADULT TENDONS; 5. STUDIES IN THE EMBRYO SUGGEST MECHANICAL FACTORS INFLUENCE EMBRYONIC TENDON DEVELOPMENT; 6. IN VITRO STUDIES SUGGEST MECHANICAL FACTORS INFLUENCE EMBRYONIC TENDON DEVELOPMENT 7. EXERCISE STUDIES EXAMINE THE INFLUENCE OF MECHANICS IN ADULT TENDON8. IN VITRO STUDIES SUGGEST MECHANICAL FACTORS INFLUENCE ADULT TENDON HOMEOSTASIS; 9. POTENTIAL MECHANISMS OF TENDON CELL MECHANOTRANSDUCTION; 10. CONCLUSIONS; LIST OF ABBREVIATIONS; REFERENCES; SECTION 2 - Pathologies and Repairof Tendons; Chapter 4 - Tendinopathy I: Understanding Epidemiology, Pathology, Healing, and Treatment; 1. INTRODUCTION; 2. ANATOMICAL DIAGNOSIS; 3. PATHOLOGY; 4. EPIDEMIOLOGY; 5. PATHOPHYSIOLOGY; 6. HEALING AND REPAIR; 7. NONSURGICAL TREATMENT; 8. SURGICAL TREATMENT; 9. CONCLUSION LIST OF ABBREVIATIONSGLOSSARY; REFERENCES; Chapter 5 - Tendinopathy II: Etiology, Pathology, and Healing of Tendon Injury and Disease; 1. EPIDEMIOLOGY; 2. DEFINITIONS; 3. TENDINOPATHY ETIOLOGY; 4. PATHOLOGY; 5. SUMMARY AND CONCLUSIONS; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; SECTION 3 - Tendon Regenerative Medicine Approaches; Chapter 6 - Cell-Based Approaches for Tendon Regeneration; 1. INTRODUCTION; 2. TENDON ENDOGENOUS REGENERATION; 3. ISOLATION PROCEDURES OF TENDON RESIDENT CELLS; 4. ALTERNATIVE STEM CELLS SOURCES FOR CELL-BASED TENDON TISSUE ENGINEERING 5. MOVING CELL THERAPIES INTO THE CLINICS6. CONCLUSION; LIST OF ABBREVIATIONS; GLOSSARY; REFERENCES; Chapter 7 - The Role of Growth Factors in Tendon Stimulation; 1. INTRODUCTION; 2. GROWTH FACTORS; 3. PLATELET-RICH PLASMA; 4. CONCLUSIONS; LIST OF ABBREVIATIONS; REFERENCES; SECTION 4 - Scaffolds-Based Approaches; Chapter 8 - Engineering Anisotropic 2D and 3D Structures for Tendon Repair and Regeneration; 1. INTRODUCTION; 2. ANISOTROPIC SPONGES; 3. ANISOTROPIC SELF-ASSEMBLED FIBERS; 4. ANISOTROPIC ELECTROSPUN FIBERS; 5. ANISOTROPIC IMPRINTED SUBSTRATES; 6. CONCLUSIVE REMARKS LIST OF ABBREVIATIONS |
Record Nr. | UNINA-9910825478703321 |
Amsterdam, [Netherlands] : , : Academic Press, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|