top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Microbial nanotechnology : green synthesis and applications / / Mohammad Azam Ansari, Suriya Rehman
Microbial nanotechnology : green synthesis and applications / / Mohammad Azam Ansari, Suriya Rehman
Autore Ansari Mohammad Azam
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (355 pages)
Disciplina 660.62
Soggetto topico Microbial biotechnology
Microbial biotechnology - Methodology
Biotecnologia microbiana
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 981-16-1923-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- 1: Prospectus and Development of Microbes Mediated Synthesis of Nanoparticles -- 1.1 Introduction -- 1.2 Nanoparticles Synthesized by Bacteria -- 1.2.1 Intracellular Production of Nanoparticles and Extracellular Production of Nanoparticles -- 1.3 Fungus-Mediated Nanoparticle Synthesis -- 1.4 Viral Nanoparticles and Virus-Like Particles -- 1.5 Synthesis of Nanoparticles Using Algae -- 1.6 Advantages of Microbial Synthesis of Nanoparticles -- 1.7 Disadvantages of Microbial Synthesis of Nanoparticles -- 1.8 Future Perspectives -- References -- Section I: Microbial Green Synthesis -- 2: Prokaryotic and Microbial Eukaryotic System for the NP Synthesis -- 2.1 Introduction -- 2.1.1 Bio-Synthesis of NPs Using Microbes -- 2.2 Microorganism Mediated Synthesis -- 2.2.1 Mechanisms of MNPs Synthesis by Microbes -- 2.2.2 Extracellular Enzymes -- 2.2.3 Intracellular Enzymes -- 2.2.4 Ag Nanoparticles -- 2.2.4.1 Trichoderma Reesei Mediated Ag NPs -- 2.2.4.2 Usage of Bacillus subtilis -- 2.2.4.3 Usage of Probiotic Bacillus licheniformis -- 2.2.4.4 Usage of Anogeissus latifolia -- 2.2.4.5 Usage of Marine Sediment Fungi -- 2.2.4.6 Usage of Salmonella typhirium Extract -- 2.2.4.7 Using Aspergillus terreus -- 2.2.4.8 Usage of Macroalgae Spirogyra varians -- 2.2.4.9 Using Pestalotiopsis pauciseta -- 2.2.4.10 Using Endophytic Fungi Pestaloptiopsis pauciseta -- 2.2.4.11 Usage of Marine Nanoparticle for the Extraction of Metal Nanosized Particle -- 2.2.5 Au Nanosized Particles -- 2.2.5.1 Using Bacteria Enzyme -- 2.2.5.2 Using Bacillus marisflavi -- 2.2.5.3 Using Pseudomonas veronii AS41G -- 2.2.5.4 Using Filamentous Cyanobacteria -- 2.2.5.5 Usage of Galaxaura elongata -- 2.2.6 ZnO Nanosized Particles -- 2.2.7 Cu Nanoparticles -- 2.2.8 Bio-Synthesis Factories as Algae -- 2.3 Conclusion -- References.
3: Intracellular and Extracellular Microbial Enzymes and Their Role in Nanoparticle Synthesis -- 3.1 Introduction -- 3.2 Bio-Synthesis of Nanoparticles and Enzymes Involved -- 3.2.1 Intracellular Synthesis -- 3.2.2 Extracellular Synthesis -- 3.3 Applications of Biosynthesized Nanoparticles -- 3.3.1 Anticancer Tools -- 3.3.2 Anti-Microbial Activity -- 3.3.3 Degradation of Dyes -- 3.3.4 Dehalogenation -- 3.3.5 Heavy Metal Ions Removal -- 3.4 Conclusion and Future Prospects in Research and Development -- References -- 4: Bacterial Synthesis of NPs and Their Scale-Up Technologies -- 4.1 Introduction -- 4.1.1 Silver Nanoparticles -- 4.1.2 Gold Nanoparticles -- 4.1.3 Zinc Oxide Nanoparticles -- 4.1.4 Magnetic Nanoparticles -- 4.1.5 Non-magnetic Nanoparticles -- 4.1.6 Other Types of Nanoparticles -- 4.2 Mechanism of Synthesis of Nanoparticles -- 4.2.1 Control of Size and Morphology of Nanoparticles -- 4.3 Demerits and Future Prospective -- 4.3.1 Selection of the Bacteria -- 4.3.2 Growth Conditions and Enzyme Activity -- 4.3.3 Stabilization of the Nanoparticles -- 4.3.4 The Extraction and Purification -- 4.3.5 Optimization and Scaling Up of the Nanoparticles -- 4.4 Conclusion -- References -- 5: Fungal Biogenesis of NPs and Their Limitations -- 5.1 Introduction -- 5.1.1 Nanotechnology -- 5.1.2 Nanoparticles (NPs) -- 5.1.3 Metal NP Synthesis -- 5.1.4 Biosynthesis of NPs by Fungi -- 5.1.4.1 Intracellular Synthesis of NPs by Fungi -- 5.1.4.2 Extracellular Synthesis of NPs by Fungi -- 5.1.5 Mechanism Involved in the Synthesis of Nanoparticle Using Fungi -- 5.1.6 Various Experimental Parameters for the Fungal Synthesis of Metal NPs -- 5.2 Characterisation Techniques for NPs -- 5.2.1 UV-Visible Spectroscopy -- 5.2.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 5.2.3 X-Ray Diffraction Technique (XRD) -- 5.2.4 Transmission Electron Microscopy (TEM).
5.2.5 Scanning Electron Microscopy (SEM) -- 5.2.6 Energy-Dispersive X-Ray Spectroscopy (EDS or EDX) -- 5.3 Limitations of Fungal Mediated NPs -- 5.3.1 Limitation of Nano Fertilizers -- 5.3.1.1 The Movement and Take-Up of NPs in Plants -- 5.3.1.2 Transformation and Collection of NPs in Plants -- 5.3.2 Nanomedicine -- 5.3.2.1 Biological Systems: A Test for Nanomedicine -- 5.3.2.2 Nanomedicine´s Social Setting: How Inside Irregularities Can Obstruct Progress -- 5.3.3 In Water Treatment, Basic Application Viewpoints -- 5.4 Conclusion -- 5.5 Future Perspective -- References -- 6: Role of Viruses in Nanoparticles Synthesis -- 6.1 Introduction -- 6.2 Nanoscience and Nanotechnology -- 6.2.1 Nanomaterial -- 6.2.1.1 Size -- 6.2.1.2 Particle Size Distribution -- 6.2.1.3 Surface Area -- 6.3 Application of Nanotechnology -- 6.4 Viruses as Nanomaterials -- 6.5 Different Types of VNPs/VLPs and their Roles -- 6.5.1 Plant Viruses -- 6.5.2 Icosahedral Plant VNPs and VLPs -- 6.5.2.1 Carnation Mottle Virus (CarMV) -- 6.5.2.2 Cowpea Mosaic Virus (CPMV) -- 6.5.2.3 Maize Rayado Fino Virus (MRFV) -- 6.5.2.4 Sesbania Mosaic Virus (SeMV) -- 6.5.2.5 Brome Mosaic Virus (BMV) -- 6.5.2.6 Cowpea Chlorotic Mottle Virus (CCMV) -- 6.5.2.7 Hibiscus Chlorotic Ringspot Virus (HCRSV) -- 6.5.2.8 Red Clover Necrotic Mottle Virus (RCNMV) -- 6.5.2.9 Turnip Yellow Mosaic Virus (TYMV) -- 6.6 Role of VNPs in Therapeutic Interventions -- 6.7 Role of VNPs as Drug Delivery Agents -- 6.8 Role of VNPs Against Infectious Diseases -- 6.9 Conclusion with Future Perspective -- References -- 7: Overview and Prospectus of Algal Biogenesis of Nanoparticles -- 7.1 Introduction -- 7.2 Algal Role in Green Synthesis -- 7.3 Algal Mediated Nanoparticle Synthesis -- 7.3.1 Intracellular Mode -- 7.3.2 Extracellular Mode -- 7.4 Factors Affecting the Algal Mediated Biosynthesis of NPs -- 7.4.1 Temperature.
7.4.2 pH of the Reaction Medium -- 7.4.3 Incubation Time -- 7.4.4 Algal Biomass Concentration -- 7.4.5 Illumination -- 7.5 Conclusion -- References -- 8: Protozoa: As Emerging Candidates for the Synthesis of NPs -- 8.1 Introduction -- 8.2 Biosynthesis of Nanoparticles (NPs) -- 8.2.1 The Intracellular and Extracellular Synthesis of Nanoparticles(NPs) by Microorganisms -- 8.3 Protozoa for theSynthesis of BiocompatibleNanoparticles(NPs) -- 8.3.1 Advantages of Protozoa for Biosynthesis ofNanoparticles (NPs) -- 8.3.2 Plausible Mechanism(s) for theSynthesis of BiocompatibleNanoparticles (NPs)by Protozoa -- 8.4 Conclusion -- References -- SectionII: Application of Microbial Nanoparticles -- 9: Industrial Perspective of Microbial Application of Nanoparticles Synthesis -- 9.1 Introduction -- 9.2 Classification of NPs -- 9.3 Chemical and Physical Synthesis of Nanoparticles -- 9.3.1 Chemical Synthesis -- 9.3.1.1 Sol-Gel Method -- 9.3.1.2 Pulsed Laser Method -- 9.3.1.3 Spray Pyrolysis -- 9.3.1.4 Co-Precipitation -- 9.3.2 Physical Methods -- 9.3.2.1 Mechanical/Ball Milling -- 9.3.2.2 Physical Vapor Deposition -- 9.4 Microbial-Mediated Synthesis of Nanoparticles -- 9.4.1 Bacterial-Biosynthesized Nanoparticles -- 9.4.2 Actinomycetes-Biosynthesized Nanoparticles -- 9.4.3 Fungal-Biosynthesized Nanoparticles -- 9.4.4 Microalgal-Biosynthesized Nanoparticles -- 9.4.5 Advantages of Biological Synthesis of NPs -- 9.5 Mechanisms of Microbial Synthesis of NPs. -- 9.6 Features of Biosynthesized NPs -- 9.6.1 Morphological Characterizations -- 9.6.2 Toxicity of Biosynthesized NPs -- 9.7 Potential Industrial Applications of Biosynthesized NPs -- 9.7.1 Applications of Nanoparticles for Wastewater Management -- 9.7.1.1 Removal of Radioactive Pollutants -- 9.7.1.2 Removal of Heavy Metals -- 9.7.1.3 Removal of Inorganic Compounds.
9.7.1.4 Application of Biogenic NPs in the Textile Industry -- 9.7.1.5 Application of NPs in the Food Industry -- 9.7.1.6 Application of NPs in Agricultural Purposes -- Nano-Fertilizers -- Nanopesticides -- 9.7.2 Nanomedicine and Biomedical Application of Nanoparticles. -- 9.7.2.1 Antimicrobial activities and Cytotoxicity Agents -- 9.7.2.2 Drug Delivery System -- 9.7.2.3 Antitumor and Anticancer Agents -- 9.7.3 Biosensors Applications -- 9.8 Conclusion and Future Perspective -- References -- 10: Microbial Nanotechnology in Treating Multidrug-Resistance Pathogens -- 10.1 Introduction -- 10.2 Overview on MDR Mechanisms of Pathogens -- 10.2.1 MDR Mechanisms in Viral Pathogens -- 10.2.2 MDR Mechanisms in Prokaryotic and Eukaryotic Pathogens -- 10.2.2.1 Antimicrobial Efflux -- 10.2.2.2 Antimicrobial Uptake Prevention -- 10.2.2.3 Antimicrobial Inactivation and Alteration -- 10.2.2.4 Antimicrobial Targeted Site Modification -- 10.2.2.5 Biofilm Formation and Quorum Sensing -- 10.3 New Therapeutic Alternatives for Combating MDROs -- 10.3.1 Antimicrobial Combination Therapy -- 10.3.2 Antimicrobial Peptide Therapy -- 10.3.3 Antimicrobial Nanoparticle Therapy -- 10.4 Microbial Nanotechnology in Treating MDROs -- 10.4.1 Microbial NPs as Antibacterial Agents -- 10.4.2 Microbial NPs as Antiviral Agents -- 10.4.3 Microbial NPs as Antifungal Agents -- 10.4.4 Microbial NPs as Antiprotozoal Agents -- 10.5 Advantages and Challenges of Microbial NPs -- 10.6 Conclusion and Future Perspectives -- References -- 11: Microbial Nanoparticles for Cancer Treatment -- 11.1 Introduction -- 11.2 Microbial NPs: An Insight into Cancer Theranostics -- 11.2.1 Microbes as Synthesizers of Anticancer NPs -- 11.2.2 Microbes as an Anticancer Agent -- 11.2.3 Microbe as a Sensing Agent -- 11.3 Genetically Engineered Microbes as Nanocarriers for Anticancer Nanoparticles.
11.4 Challenges of Microbial NPs as Alternative Cancer Treatments.
Record Nr. UNINA-9910502971403321
Ansari Mohammad Azam  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanotechnology for infectious diseases / / edited by Saif Hameed and Suriya Rehman
Nanotechnology for infectious diseases / / edited by Saif Hameed and Suriya Rehman
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (638 pages)
Disciplina 616.90475
Soggetto topico Nanomedicine
ISBN 981-16-9190-8
981-16-9189-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Dr. Shahid Jameel -- Foreword by Prof. Abdulhadi Baykal -- Preface -- Contents -- About the Editors -- Part I: Infectious Diseases -- 1: A Holistic View of Human Infectious Diseases: Challenges and Opportunities -- 1.1 Overview -- 1.2 Chain of Infection -- 1.2.1 Infectious Agents -- 1.2.2 Reservoir -- 1.2.3 Modes of Escape -- 1.2.4 Mode of Transmission -- 1.2.5 Direct Contact -- 1.2.5.1 Droplet Transmission -- 1.2.5.2 Indirect Transmission -- Airborne Transmission -- Vehicle Borne Transmission -- Vector Borne Transmission -- 1.2.6 Portal of Entry -- 1.2.7 Susceptible Host -- 1.3 Emerging and Re-emerging Diseases -- 1.3.1 Re-emerging Infectious Diseases -- 1.3.2 Factors Contributing to Emergence or Re-emergence of Infectious Diseases -- 1.3.3 Globalization, Trade, and Travelling -- 1.3.4 Environmental and Ecological Changes -- 1.3.5 Human-Reservoir (Wild Animal) Interface -- 1.3.6 Adaptations and Changes of Microbial Agents/Antibiotic Resistance -- 1.4 Interventions for Infectious Disease Control and Prevention -- 1.4.1 Antimicrobials/Antibiotics -- 1.4.2 Vaccines -- 1.4.3 Public Health Priority for Infection Control -- 1.5 New Strategies and Hopes -- 1.5.1 Nanotechnology and Nanobiology -- 1.5.2 Gene Sequencing to Inform Infection Control -- 1.5.3 Data Handling and Simulation Systems -- 1.5.4 Healthcare Reforms -- 1.6 Conclusion -- References -- 2: Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview -- 2.1 Introduction -- 2.2 Nano Formulations for the Treatment of Bacterial Infections -- 2.3 Nano Formulations for the Treatment of Fungal Infections -- 2.4 Application of Nanotechnology Against Viral Infections -- 2.5 Nanotechnology in Drug Delivery Targeting Infectious Diseases -- 2.6 Nanomaterials Vaccines for Infectious Diseases.
2.7 Nanomaterials in Photothermal Therapy Against Infectious Pathogens -- 2.8 Application of Nanodiamonds in Infectious Diseases -- 2.9 Synergistic Antimicrobial Potentials of Nanomaterials/Nanocomposite in Combination with Other Antimicrobial Agents Against... -- 2.10 Challenges and Future Perspectives -- 2.11 Conclusion -- References -- 3: Understanding the Pharmacology and Pharmacotherapeutics for Infectious Diseases -- 3.1 Introduction -- 3.2 Transmission of Infectious Diseases -- 3.3 Infectious Diseases -- 3.3.1 Bacterial Diseases -- 3.3.2 Fungal Infections -- 3.3.3 Viral Infections -- 3.3.4 Parasitic Infections -- 3.4 Emerging Infectious Diseases -- 3.5 Pharamacotherapeutic Interventions -- 3.5.1 Antibiotics -- 3.5.1.1 Beta Lactam Antibiotics -- 3.5.1.2 Fluoroquinolones -- 3.5.2 Antifungals -- 3.5.3 Antivirals -- 3.5.3.1 Antiviral Targeting the Viral Proteins -- 3.5.3.2 Antivirals Targeting the Host Proteins -- 3.5.4 Antiparasitic Drugs -- 3.6 Nanomedicine -- 3.6.1 Types of Nanoparticles Used in Nanomedicine -- 3.6.1.1 Organic Nanoparticles -- 3.6.1.2 Inorganic Nanoparticles -- 3.6.2 Nanoparticles in Infectious Diseases -- 3.7 Conclusion -- References -- Part II: Nanomaterials as Anti-infection Therapeutics -- 4: Advanced Nanomaterials for Infectious Diseases Therapeutics -- 4.1 Metal-Based Nanoparticles -- 4.1.1 Silver Nanoparticles -- 4.1.2 Gold Nanoparticles -- 4.1.3 Iron-Oxide Based Nanoparticles -- 4.1.4 Zinc Oxide Nanoparticles -- 4.1.5 Copper Oxide Nanoparticles -- 4.2 Encapsulated Nanoparticles -- 4.2.1 Polymer/Dendrimer Encapsulation -- 4.2.2 Metal Encapsulation -- 4.3 Nanoantibiotics -- 4.4 Conclusions and Future Trend -- References -- 5: Metal-Based Nanoparticles for Infectious Diseases and Therapeutics -- 5.1 Introduction -- 5.2 Bacteria and Antibacterial Drug -- 5.3 Metal-Based Nanoparticles.
5.3.1 Synthesis, Characterization, and Properties of Metal-Based Nanoparticles -- 5.3.2 Classification of Metal-Based Nanoparticles -- 5.3.3 Metal Nanoparticles Against Infectious Diseases -- 5.3.4 Metal Oxide Nanoparticles Against Infectious Diseases -- 5.3.5 Metal Sulfide Nanoparticles Against Infectious Diseases -- 5.4 General Mechanism of Metal-Based Nanoparticles Against Infectious Diseases -- 5.5 Factors Affecting the Antimicrobial Activities of Nanoparticles -- 5.6 Conclusion -- References -- 6: The Future Therapy of Nanomedicine Against Respiratory Viral Infections -- 6.1 Introduction -- 6.2 Viruses Classification According to the Genetic Materials -- 6.3 The Threat of Respiratory Viral Infections -- 6.3.1 The SARS-CoV-2 Threat -- 6.3.2 Toxicity of Conventional Antiviral Drugs -- 6.4 Nanodrugs and Their Efficacy in Killing Viruses -- 6.4.1 Nanomedicine Weapon Against SARS-CoV-2 Threat -- 6.4.2 Biogenic and Non-biogenic Metallic Nanoparticles and Its Antiviral Efficiency -- 6.4.3 The Antiviral Activity of Organic Nanoparticles -- 6.4.3.1 Polymeric Nanoparticles -- 6.4.3.2 Carbon-Based Nanomaterials as Antivirals -- 6.4.3.3 Lactoferrin Loaded Nanoparticles as Antivirals -- 6.4.3.4 Silica Nanocarriers as Antivirals -- 6.5 Conclusion -- References -- 7: Application of Nanoparticles to Invasive Fungal Infections -- 7.1 Introduction -- 7.2 Antifungal Therapy -- 7.2.1 Azole Compounds -- 7.2.2 Pyrimidine Analogous -- 7.2.3 Polyenes -- 7.2.4 Echinocandins -- 7.3 Nanoformulations for Antifungal Therapy -- 7.3.1 Polymeric Nanoparticles -- 7.3.2 Metallic Nanoparticles -- 7.3.3 Lipid Nanoparticles -- 7.4 Systemic Mycoses and Nanotechnology -- 7.4.1 Candida sp. -- 7.4.1.1 Polymeric Nanoparticles -- 7.4.1.2 Lipid Nanoparticles -- 7.4.2 Aspergillus sp. -- 7.4.2.1 Polymeric Nanoparticles -- 7.4.3 Cryptococcus sp. -- 7.4.3.1 Polymeric Nanoparticles.
7.4.3.2 Metallic Nanoparticles -- 7.4.3.3 Lipid Nanoparticles -- 7.4.4 Paracoccidioides sp. -- 7.4.4.1 Polymeric Nanoparticles -- Polymeric Nanoparticles Used in Vaccines -- 7.4.4.2 Metallic Nanoparticles -- 7.4.4.3 Lipid Nanoparticles -- 7.5 Conclusion -- References -- 8: Nanomaterials in the Diagnosis and Treatment of Leishmaniasis -- 8.1 Introduction -- 8.2 Available Chemotherapeutic Drugs for Leishmaniasis -- 8.2.1 Pentavalent Antimonial -- 8.2.2 Pentamidine -- 8.2.3 Amphotericin B -- 8.2.4 Miltefosine -- 8.2.5 Paromomycin -- 8.2.6 Sitamaquine -- 8.2.7 Other New Antileishmanial Molecules -- 8.3 Conventional Methods for Detection of Leishmaniasis -- 8.4 Nanomaterials in the Diagnosis of Leishmaniasis -- 8.5 Nanomaterials in the Therapy and Protection Against Leishmania spp. Infection -- 8.5.1 Antileishmanial Nanoparticles and Nanopreparations -- 8.5.2 Nanomaterials in the Development of Vaccine Against Leishmaniasis -- 8.6 Conclusion -- References -- 9: A Comprehensive Review on the Synthesis, Surface Decoration of Nanoselenium and Their Medical Applications -- 9.1 Introduction -- 9.2 Chemical Synthesis of SeNPs -- 9.2.1 Chemical Reduction Methods -- 9.2.2 Wet Chemical Method -- 9.2.3 Hydrothermal Methods -- 9.2.4 Solvothermal Method -- 9.2.5 Sol-Gel Method -- 9.3 Physical Synthesis of SeNPs -- 9.3.1 Lser bltin -- 9.3.2 Microwave Irradiation Method -- 9.3.3 Sonochemical (Ultrasonic) -- 9.3.4 Gamma Radiation -- 9.3.5 Low Temperature Reactive Aerosol Processing -- 9.3.6 Heterogeneous Condensation Method -- 9.3.7 Ball Milling Method -- 9.4 Biological Synthesis of SeNPs -- 9.5 Antimicrobial Activity and Mechanism of SeNPs -- 9.6 Surface Decoration of SeNPs -- 9.6.1 5-Fluorouracil (5-FU) -- 9.6.2 Polyporus rhinoceros -- 9.6.3 Chitosan -- 9.6.4 Other Amino Acids -- 9.6.5 Proteins or Polypeptide -- 9.6.6 Natural Products -- 9.7 Conclusion -- References.
Part III: Nanotechnology and Drug Carriers -- 10: Nanotechnology in Drug Delivery Systems: Ways to Boost Bioavailability of Drugs -- 10.1 Introduction -- 10.2 Nanotechnology Oriented Drug Delivery Systems -- 10.3 Nanoparticles as Drug Carrier -- 10.4 Quantum Dots Nanocarriers -- 10.5 Electrospun Nanofibers as Carriers -- 10.6 Nanoemulsions for Delivery of Drugs -- 10.7 Nanohydrogel Delivery Systems -- 10.8 Conclusion -- References -- 11: Recent Developments in Silica Nanoparticle Based Drug Delivery System -- 11.1 Introduction -- 11.2 Types of Silica Nanoparticles -- 11.3 Non-porous Silica Nanoparticle -- 11.4 Mesoporous Silica Nanoparticles -- 11.5 Core/Shell Silica Nanoparticles -- 11.6 Synthesis of Silica Nanoparticles -- 11.7 Mesoporous Silica Nanoparticles as Drug Delivery System -- 11.8 pH Responsive MSN Based Carrier System -- 11.9 Redox Responsive Nanocarrier -- 11.10 Enzyme Responsive Nanocarrier -- 11.11 Silica Nanoparticle as a DDS for Infectious Diseases -- 11.12 Beneficial Attributes of NPs for Treatment of Infectious Diseases -- 11.13 Specific Properties of MSN Due to Which they are Used as a Nanocarrier for Infectious Disease Treatment -- 11.14 Biocompatibility, Biodistribution, and Clearance of Silica Nanoparticles -- References -- 12: Nano Drug Delivery Approaches for Lymphatic Filariasis Therapeutics -- 12.1 Introduction -- 12.2 Pathophysiological Aspects of Lymphatic Filariasis and Drug Based Targeting -- 12.3 Nanomedicine as Advanced Tool for Targeting -- 12.3.1 Nanotechnology for Overcoming Anatomical Barriers -- 12.3.1.1 In the Treatment of Adult Stage Filariasis Through Targeted Nano Drug Delivery System -- 12.3.1.2 Nanotherapeutic Amplification of MIF Effectiveness to Stop the Conduction of Lymphatic Filariasis -- 12.3.2 Nanotechnology as Enhancing the Physiochemical Properties.
12.3.2.1 Nanoscientific Elucidation for Poor Solubility of Anti-filarial Agents.
Record Nr. UNINA-9910743343003321
Gateway East, Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui