top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Emerging Technologies for the Energy Systems of the Future
Emerging Technologies for the Energy Systems of the Future
Autore Anvari-Moghaddam Amjad
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Technology: general issues
Soggetto non controllato hybrid systems
photovoltaic
wind energy
energy economics
RES investments
Zimbabwe
Africa and energy security
electricity price forecasting (EPF)
wind power forecasting (WPF)
spot market
balancing market
ARMAX
NARX-ANN
100% renewable power system
secondary voltage control
tertiary voltage control
grid code
wind farms
photovoltaic parks
energy transition
renewable energy sources
island power systems
hybrid power plants
wind turbines
battery energy storage systems
marine microgrid
tidal generation system
black widow optimization
supplementary control
fractional integrator
non-linear fractional integrator
100% renewable power generation
nexus
food
energy
water
greenhouse gas emission
microgrid
ancillary services
energy storage
power management
solar hot waters
thermosyphon
thermal performance
Morocco
economic outcomes
CO2 environmental assessment
solar system
domestic hot water production
solar water heaters
individual and collective solar water heater systems
dynamic simulation
TRNbuild
TRNSYSstudio
energy management
residential and commercial loads
short-term load forecasting
deep learning
bidirectional long short-term memory (Bi-LSTM)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557361303321
Anvari-Moghaddam Amjad  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Autore Daneshvar Mohammadreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (475 pages)
Altri autori (Persone) Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad
RazzaghiReza
Collana IEEE Press Series on Power and Energy Systems Series
ISBN 1-394-18878-1
1-394-18876-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks.
4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art.
6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell.
9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm.
11.4 Delay-Fair Charging Management.
Record Nr. UNINA-9910830452503321
Daneshvar Mohammadreza  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
Autore Daneshvar Mohammadreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (475 pages)
Altri autori (Persone) Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad
RazzaghiReza
Collana IEEE Press Series on Power and Energy Systems Series
Soggetto topico Sustainable development
Renewable energy sources
ISBN 9781394188789
1394188781
9781394188765
1394188765
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks.
4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art.
6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell.
9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm.
11.4 Delay-Fair Charging Management.
Record Nr. UNINA-9910877176703321
Daneshvar Mohammadreza  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui