Algebraic geometry : proceedings of the Japan-France Conference held at Tokyo and Kyoto, October 5-14, 1982 / / edited by Michel Raynaud, Tetsuji Shioda
| Algebraic geometry : proceedings of the Japan-France Conference held at Tokyo and Kyoto, October 5-14, 1982 / / edited by Michel Raynaud, Tetsuji Shioda |
| Edizione | [1st ed. 1983.] |
| Pubbl/distr/stampa | Berlin : , : Springer-Verlag, , [1983] |
| Descrizione fisica | 1 online resource (VIII, 532 p.) |
| Disciplina | 516.35 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico | Geometry, Algebraic |
| ISBN | 3-540-38676-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Around the Mordell conjecture for function fields and a conjecture of Serge Lang -- Finiteness, duality, and Künneth theorems in the cohomology of the De Rham Witt complex -- De Rham cohomology of algebraic surfaces with q=?pa in char. p -- Cohomologie de De Rham, cohomologie cristalline et representations p-adiques -- Class field theory and algebraic K-theory -- Geometrie microlocale -- Vanishing cycle sheaves and holonomic systems of differential equations -- Vanishing cycles over a base of dimension ?1 -- Sur la catégorie dérivées des D-modules filtrés -- Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne -- Transcendental cycles on Hilbert modular surfaces -- Algebraic cycles on a certain hypersurface -- Hironaka group schemes and resolution of singularities -- Condition de Jung four les revêtements radiciels de hauteur 1 -- The uniruledness of the moduli space of curves of genus 11 -- A remark on variation of the Hodge structure on curves -- Singularities of the curve of jumping lines of a vector bundle of rank 2 on ?2 -- Hirzebruch’s examples of surfaces of general type with c1 2=3c2 -- Characterization of two lines on a projective plane -- On the affine-ruledness of algebraic varieties -- Minimal rational threefolds -- Vanishing theorems for semipositive line bundles -- Proceedings of the conference on algebraic geometry held at La Rabida. |
| Record Nr. | UNISA-996466604103316 |
| Berlin : , : Springer-Verlag, , [1983] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Néron Models [[electronic resource] /] / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud
| Néron Models [[electronic resource] /] / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud |
| Autore | Bosch Siegfried |
| Edizione | [1st ed. 1990.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990 |
| Descrizione fisica | 1 online resource (X, 328 p.) |
| Disciplina | 516.35 |
| Collana | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
| Soggetto topico |
Algebraic geometry
Algebraic Geometry |
| ISBN | 3-642-51438-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models -- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron’s Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron’s Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group of Connected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case. |
| Record Nr. | UNINA-9910480014503321 |
Bosch Siegfried
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Néron Models [[electronic resource] /] / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud
| Néron Models [[electronic resource] /] / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud |
| Autore | Bosch Siegfried |
| Edizione | [1st ed. 1990.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990 |
| Descrizione fisica | 1 online resource (X, 328 p.) |
| Disciplina | 516.35 |
| Collana | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
| Soggetto topico |
Algebraic geometry
Algebraic Geometry |
| ISBN | 3-642-51438-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models -- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron’s Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron’s Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group of Connected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case. |
| Record Nr. | UNINA-9910789209803321 |
Bosch Siegfried
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Néron Models / / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud
| Néron Models / / by Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud |
| Autore | Bosch Siegfried |
| Edizione | [1st ed. 1990.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990 |
| Descrizione fisica | 1 online resource (X, 328 p.) |
| Disciplina | 516.35 |
| Collana | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics |
| Soggetto topico |
Geometry, Algebraic
Algebraic Geometry |
| ISBN |
9783642514388
3642514383 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models -- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron’s Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron’s Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group ofConnected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case. |
| Record Nr. | UNINA-9910972120703321 |
Bosch Siegfried
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||