Vai al contenuto principale della pagina
Autore: | Pastor-Escuredo David |
Titolo: | The Future of Artificial Intelligence and Robotics : Proceedings of 5th International Conference on Deep Learning, Artificial Intelligence and Robotics, (ICDLAIR) 2023 - Progress in AI-Driven Business Decisions and Robotic Process Automation |
Pubblicazione: | Cham : , : Springer, , 2024 |
©2024 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (0 pages) |
Altri autori: | BriguiImene KesswaniNishtha BordoloiSushanta RayAshok Kumar |
Nota di contenuto: | Intro -- Contents -- A Comparative Study of Machine Learning Algorithms for Predicting Cardiovascular Disease -- 1 Introduction -- 2 Related Works -- 2.1 Supervised Machine Learning-Based Approaches -- 2.2 Unsupervised Machine Learning-Based Approaches -- 2.3 Hybrid Machine Learning-Based Approaches -- 3 Methodology and Study Design -- 4 Experiments and Discussions -- 4.1 Experiments: Setup and Datasets -- 4.2 Discussions: Performance Evaluation -- 5 Conclusion -- References -- Deep W-Net: DNN for Spatial Saliency Prediction in Video Frames -- 1 Introduction -- 2 Related Work -- 2.1 Recent Work -- 3 Proposed Model -- 3.1 Proposed Architecture -- 3.2 Encoder Block -- 3.3 Decoder Block -- 3.4 Training Process -- 4 Experimental Results -- 4.1 Evaluation Methodology -- 4.2 Comparative Research Employing Techniques that Are Already Proposed -- 5 Conclusion -- References -- Optimal Pose Estimation with Particle Filters Using Unpowered Wheels -- 1 Introduction -- 2 Literature Review -- 3 Problem Statement -- 4 Error Analysis in Conventional Approaches -- 4.1 GPS Based Path Tracking Analysis -- 4.2 Wheel Odometry Data-Based Path Tracking Analysis -- 5 Improved Path Tracking Technique -- 6 Conclusion -- References -- A Short Survey on Comparative Study of Modern Cryptography Approach -- 1 Introduction -- 1.1 Cryptography Goals -- 1.2 Cryptography Algorithm -- 1.3 Applications of Cryptography -- 1.4 Aims and Objectives of the Study -- 1.5 Structure of the Paper -- 2 Background -- 2.1 History of Cryptography -- 2.2 Short Overview of Classic to Modern Cryptography Path -- 2.3 Basic Terminology of Cryptography -- 2.4 Cryptography Attacks -- 2.5 Related Work -- 3 Comparative Study of Modern Cryptography -- 3.1 Symmetric Encryption -- 3.2 Asymmetric Encryption -- 3.3 Hashing -- 4 Conclusion -- References. |
Advances in Computer-Aided Detection and Diagnosis of Retinal Diseases: A Comprehensive Survey of Fundal Image Analysis -- 1 Introduction -- 2 Literature Review -- 2.1 Data Acquisition -- 2.2 Data Pre-processing and Feature Selection -- 2.3 Techniques Used -- 3 Critical Evaluation -- 4 Conclusion -- References -- Driver Safety and Drowsiness Detection in Internet of Vehicles with Federated Learning -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 4 Results and Discussion -- 4.1 Tools Used and Dataset -- 4.2 Vehicle Network Simulation -- 5 Conclusion and Future Work -- References -- Privacy Preserving Fingerprint Classification Using Federated Learning -- 1 Introduction -- 2 Related Work -- 3 Proposed Solution -- 4 Results and Discussion -- 4.1 Network Architecture -- 4.2 Training Setup -- 4.3 Authentication Results -- 5 Conclusion and Future Direction -- References -- Comparative Study of Ensemble Learning Models for Smart Meter Load -- 1 Introduction -- 2 Literature Review -- 3 Ensemble Learning Based Forecasting Model -- 4 Results and Discussion -- 4.1 Experimental Setup and Dataset -- 4.2 Performance Analysis -- 5 Conclusion -- References -- Social-Media Video Summarization Using Convolutional Neural Network and Kohnen's Self Organizing Map -- 1 Introduction -- 2 Related Work -- 3 Proposed Model -- 3.1 Pre-processing -- 3.2 Feature Extraction -- 3.3 SOM Clustering -- 3.4 Keyframe Selection -- 4 Experimental Results and Discussion -- 4.1 Experimental Settings -- 4.2 Dataset -- 4.3 Evaluation Metrics -- 4.4 Results Analysis -- 5 Conclusion -- References -- Machine Learning and Deep Leaning in Predicting Coronary Heart Disease -- 1 Introduction -- 2 Research Methodology -- 2.1 Collection and Properties of Dataset -- 2.2 Data Pre-processing -- 3 Experiment and Output -- 4 Conclusion -- 5 Future Works -- References. | |
Augmented Super Resolution GAN (ASRGAN) for Image Enhancement Through Reinforced Discriminator -- 1 Introduction -- 2 Super Resolution -- 3 Proposed Method -- 4 Results and Findings -- 5 Conclusion -- References -- Convolutional Block Attention Assisted Dense Stacked Bi-LSTM for the Generation of RDF Statements -- 1 Introduction -- 2 Related Works -- 3 Proposed Methodology -- 3.1 Pre-processing -- 3.2 Feature Extraction Using the BERT-LSTM Model -- 3.3 Feature Clustering Using Adaptive Density K-means Clustering -- 3.4 RDF Classification Using Convolutional Block Attention Assisted Dense Stacked Bi-LSTM Model -- 4 Results and Discussion -- 4.1 Dataset Description -- 4.2 Performance Measures -- 4.3 Performance Analysis -- 4.4 Discussion -- 5 Conclusion -- References -- Real-Time Permanent Change Proposals for Abandoned Object Detection -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Experiment Results -- 4.1 Accuracy Results -- 4.2 Accuracy Comparison -- 4.3 Runtime Speed Analysis -- 5 Conclusion -- 6 Future Work -- References -- An Excursion to Ontology-Based Non-functional Requirements Specification -- 1 Introduction -- 2 Non-functional Requirements -- 3 Quality Models -- 4 Ontology -- 5 NFRs Specification -- 5.1 NFRs: A Hard or Soft Goal? -- 5.2 NFRs Extraction: Interview-Based Approach to Ontology-Based Approach -- 5.3 Comparative Analysis and Issues -- 6 Conclusions -- References -- A Review of Traditional and Neural Network Methods for Protecting Privacy in Big Data Analytics -- 1 Introduction -- 2 Anonymization Techniques -- 3 Data Distribution Technique -- 3.1 Horizontal Distribution -- 3.2 Vertical Distribution -- 4 Randomization Technique -- 5 Privacy Preserving Neural Networks -- 5.1 Cloud-Based Neural Networks -- 5.2 Clustering Based Algorithms -- 6 Privacy Preservation Using Fuzzy Neural Network -- 7 Conclusion -- References. | |
A Long Short-Term Memory Learning Based Malicious Node Detection for Clustering in Wireless Sensor Networks -- 1 Introduction -- 2 Related Work -- 3 Proposed System Architecture -- 3.1 Parameter Tuning, and Evaluation Metrics -- 4 Results and Discussions -- 5 Conclusion -- References -- Experimental Analysis for Sensor Reduction to Depict Real-Time Applications Through Regression Techniques -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Regression Technique -- 3.2 Mathematical Model -- 4 Experiments and Results -- 5 Conclusion -- References -- Multi-resolution Neural Network for Road Scene Segmentation -- 1 Introduction -- 2 Related Works -- 3 Proposed Work -- 3.1 Proposed Neural Network -- 3.2 Dataset -- 3.3 Benchmarking -- 4 Results and Discussion -- 4.1 Discussion -- 5 Conclusion -- References -- A CNN-Based Road Accident Detection and Comparison of Classification Techniques -- 1 Introduction -- 1.1 Motivation -- 1.2 Objective -- 1.3 Contribution -- 1.4 Paper Organization -- 2 Related Works -- 2.1 Machine Learning Methods -- 3 Proposed Work -- 3.1 Feature Extraction by CNN -- 3.2 Architecture Used -- 4 Results and Analysis -- 5 Conclusion and Future Work -- References -- Football Match Result Prediction Using Twitter Statistical/Historical Data -- 1 Introduction -- 1.1 Motivation -- 1.2 Objective -- 1.3 Contribution -- 2 Literature Survey -- 3 Methodology -- 3.1 Datasets -- 3.2 Training and Testing Splitting -- 3.3 Models Used -- 3.4 Evaluation Matrices -- 4 Results and Discussion -- 4.1 Random Forest Classifier -- 4.2 SVM Classifier -- 4.3 Naive Bayes Classifier -- 4.4 KNN Classifier -- 4.5 Comparison of all Models Used -- 4.6 Comparison with Existing Models -- 5 Conclusion and Future Work -- References. | |
Safeguarding Ecosystems and Efficiency in Peer-to-Peer File Sharing Systems: An IoT-Inspired Approach to Pollution Mitigation -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 4 Experiments and Results -- 4.1 Analysis -- 4.2 Impact -- 5 Conclusion -- References -- A Heuristic for Minimizing Resource Requirement for Quantum Graph Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 GNNs for Graph Classification -- 3.2 Quantum Circuits -- 3.3 Hybrid-QGNNs for Graph Classification -- 3.4 Clustering Algorithms -- 4 Methodology -- 4.1 Parameter Training -- 4.2 Classification -- 5 Experiments and Results -- 6 Conclusion -- References -- Light-Gated Recurrent Unit Based Acoustic Modeling for Improved Hindi ASR -- 1 Introduction -- 2 DNN-Li-GRU Hybrid Architecture -- 3 Corpus Details and Experimental Setup -- 3.1 Corpus Details -- 3.2 Experimental Setup -- 4 Experiments -- 4.1 Experiment with Different Acoustic Features -- 4.2 Role of Batch-Normalization -- 4.3 Impact of Diffent Techniques -- 4.4 Computational Efficiency of Different Models -- 4.5 Hybrid Acoustic Modeling -- 5 Conclusion -- References -- Detecting Phishing URLs Using Machine Learning: A Review -- 1 Introduction -- 2 Literature Review -- 3 Issues and Challenges -- 3.1 Datasets and Insufficient Training Data -- 3.2 Dynamic and Changing Nature of Phishing Techniques -- 3.3 Feature Extraction Challenges -- 3.4 Class Imbalance -- 4 Future Research Directions -- 4.1 Improved Feature Extraction and Selection -- 4.2 Better Training Data -- 4.3 Hybrid Approaches -- 4.4 Integration with User Education -- 5 Conclusion -- References -- Comparative Analysis of Pneumonia Detection from Chest X-ray Using Deep Learning -- 1 Introduction -- 1.1 Transfer Learning -- 1.2 Ensemble Learning -- 2 Available Datasets -- 3 Issues with Datasets. | |
4 Comparative Analysis of Pneumonia Detection Approaches. | |
Titolo autorizzato: | The Future of Artificial Intelligence and Robotics |
ISBN: | 9783031609350 |
9783031609343 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910881088303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |