top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data Science in Agriculture and Natural Resource Management
Data Science in Agriculture and Natural Resource Management
Autore Reddy G. P. Obi
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2021
Descrizione fisica 1 online resource (326 pages)
Altri autori (Persone) RavalMehul S
AdinarayanaJ
ChaudharySanjay
Collana Studies in Big Data Ser.
Soggetto genere / forma Electronic books.
ISBN 981-16-5847-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910502670603321
Reddy G. P. Obi  
Singapore : , : Springer Singapore Pte. Limited, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital Ecosystem for Innovation in Agriculture / / edited by Sanjay Chaudhary, Chandrashekhar M. Biradar, Srikrishnan Divakaran, Mehul S. Raval
Digital Ecosystem for Innovation in Agriculture / / edited by Sanjay Chaudhary, Chandrashekhar M. Biradar, Srikrishnan Divakaran, Mehul S. Raval
Autore Chaudhary Sanjay
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (280 pages)
Disciplina 006.3
Altri autori (Persone) BiradarChandrashekhar M
DivakaranSrikrishnan
RavalMehul S
Collana Studies in Big Data
Soggetto topico Computational intelligence
Artificial intelligence
Agriculture
Big data
Computational Intelligence
Artificial Intelligence
Big Data
Soggetto non controllato Artificial Intelligence
Agriculture
Engineering
Computers
Technology & Engineering
ISBN 9789819905775
9789819905768
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Brief Review of Tools to Promote Transdisciplinary Collaboration for Addressing Climate Change Challenges in Agriculture by Model Coupling -- Machine Learning and Deep Learning in Agriculture – A review -- Need of orchestration platform to unlock the potential of remote sensing data -- An Algorithmic Framework for fusing images from satellites, Unmanned Aerial Vehicles (UAV), and Farm Internet of Things (IoT) Sensors -- Globally Scalable and Locally Adaptable Satellite Solutions for Agriculture -- A Theoretical Framework of Agricultural Knowledge Management Process in the Indian Agriculture Context -- Simple and innovative methods to estimate gross primary production and transpiration of crops: a review -- Role of Virtual Plants in Digital Agriculture -- Remote sensing for mango and rubber mapping and characterisation for carbon stock estimation– Case study of Malihabad tahsil (UP) and West Tripura District, India -- Impact of Vegetation Indices on Wheat Yield Prediction using Spatio-Temporal Modeling -- Farm-wise estimation of crop water requirement of major crops using deep learning architecture -- Hyperspectral Remote Sensing for Agriculture Land Use and Land Cover Classification -- Computer Vision Approaches for Plant Phenotypic Parameter Determination.
Record Nr. UNINA-9910726288303321
Chaudhary Sanjay  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui