Data Science in Societal Applications [[electronic resource] ] : Concepts and Implications / / edited by Siddharth Swarup Rautaray, Manjusha Pandey, Nhu Gia Nguyen |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (199 pages) |
Disciplina | 005.7 |
Collana | Studies in Big Data |
Soggetto topico |
Artificial intelligence - Data processing
Application software Big data Quantitative research Data Science Computer and Information Systems Applications Big Data Data Analysis and Big Data |
ISBN | 981-19-5154-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cloud GIS Model for Coastal Geospatial Big Data Analytics -- Appealing AI in Appalling Covid-19 Crisis and the Impending -- Role of Data Science in Programmatic Advertising -- Social Development Data and Societal Modelling: A study in Indian Context -- Deep learning Trends and Inspired Systems in Natural Language Processing. |
Record Nr. | UNISA-996490362603316 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Data Science in Societal Applications : Concepts and Implications / / edited by Siddharth Swarup Rautaray, Manjusha Pandey, Nhu Gia Nguyen |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (199 pages) |
Disciplina | 005.7 |
Collana | Studies in Big Data |
Soggetto topico |
Artificial intelligence - Data processing
Application software Big data Quantitative research Data Science Computer and Information Systems Applications Big Data Data Analysis and Big Data Mineria de dades Dades massives Intel·ligència artificial Processament de dades |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9789811951541
9811951543 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cloud GIS Model for Coastal Geospatial Big Data Analytics -- Appealing AI in Appalling Covid-19 Crisis and the Impending -- Role of Data Science in Programmatic Advertising -- Social Development Data and Societal Modelling: A study in Indian Context -- Deep learning Trends and Inspired Systems in Natural Language Processing. |
Record Nr. | UNINA-9910739441303321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Innovations for Community Services [[electronic resource] ] : 20th International Conference, I4CS 2020, Bhubaneswar, India, January 12–14, 2020, Proceedings / / edited by Siddharth Swarup Rautaray, Gerald Eichler, Christian Erfurth, Günter Fahrnberger |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (xiii, 325 pages) : illustrations |
Disciplina | 004.36 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Computer communication systems
Computers Architecture, Computer Special purpose computers Coding theory Information theory Software engineering Computer Communication Networks Information Systems and Communication Service Computer System Implementation Special Purpose and Application-Based Systems Coding and Information Theory Software Engineering |
ISBN | 3-030-37484-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996465458603316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Innovations for Community Services : 20th International Conference, I4CS 2020, Bhubaneswar, India, January 12–14, 2020, Proceedings / / edited by Siddharth Swarup Rautaray, Gerald Eichler, Christian Erfurth, Günter Fahrnberger |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (xiii, 325 pages) : illustrations |
Disciplina |
004.36
004.6 |
Collana | Communications in Computer and Information Science |
Soggetto topico |
Computer communication systems
Computers Architecture, Computer Special purpose computers Coding theory Information theory Software engineering Computer Communication Networks Information Systems and Communication Service Computer System Implementation Special Purpose and Application-Based Systems Coding and Information Theory Software Engineering |
ISBN | 3-030-37484-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910366658003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine learning : theoretical foundations and practical applications / / Manjusha Pandey, Siddharth Swarup Rautaray, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (xi, 172 pages) : illustrations (some color), charts |
Disciplina | 006.31 |
Collana | Studies in Big Data |
Soggetto topico | Machine learning |
ISBN | 981-336-518-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | What do RDMs capture in brain responses and computational models? -- Challenges and solutions in developing convolutional neural networks and long short-term memory networks for industry problems -- Speed, cloth and pose invariant gait recognition-based person identification -- Application of machine learning in industry 4.0 -- Web semantics and knowledge graph -- Machine learning-based wireless sensor networks -- AI to machine learning : lifeless automation and issues -- Analysis of FDIs in different sectors of the Indian economy -- Customer profiling and retention using recommendation system and factor identification to predict customer churn in telecom industry. |
Record Nr. | UNINA-9910484871303321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Progress in computing, analytics and networking : proceedings of ICCAN 2019 / / editors, Himansu Das [et al.] |
Edizione | [1st edition 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (665 pages) |
Disciplina | 621.39 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico | Computer science |
ISBN | 981-15-2414-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Implementation of Session to Mobility Ratio Based Mobility Management Scheme for Wireless Mesh Network to Handle Internet and Intranet Packets -- Peer Analysis of “Sanguj” with Other Sanskrit Morphological Analyzers -- Optimizing Performance of Text Searching using CPU and GPUs -- Partial Offloading for Fog Computing Using P2P Based File Sharing Protocol -- Analysis of Proactive Simulated Topology Reconfiguration for WDM Networks -- Industrial Automation: Case Study - Vision Based Live Object Monitoring System -- Control of Home Appliances and Projector by Smart application using SEAP Protocol -- Maize Leaf Disease Detection and Classification using Machine Learning Algorithms. |
Record Nr. | UNINA-9910483668903321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Progress in Computing, Analytics and Networking : Proceedings of ICCAN 2017 / / edited by Prasant Kumar Pattnaik, Siddharth Swarup Rautaray, Himansu Das, Janmenjoy Nayak |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (826 pages) |
Disciplina | 004.6 |
Collana | Advances in Intelligent Systems and Computing |
Soggetto topico |
Computational intelligence
Signal processing Image processing Speech processing systems Electrical engineering Big data Computational Intelligence Signal, Image and Speech Processing Communications Engineering, Networks Big Data/Analytics |
ISBN | 981-10-7871-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Organizing Committee -- About the Editors -- Table of Contents -- 79 Papers -- Author Index. |
Record Nr. | UNINA-9910299900903321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Trends of data science and applications : theory and practices / / Siddharth Swarup Rautaray, Phani Pemmaraju, Hrushikesha Mohanty, editors |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (xiii, 341 pages) : illustrations |
Disciplina | 006.312 |
Collana | Studies in computational intelligence |
Soggetto topico |
Data mining
Artificial intelligence Machine learning |
ISBN | 981-336-815-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- About This Book -- Contents -- About the Editors -- NLP for Sentiment Computation -- 1 Introduction -- 2 Natural Language and Sentiments -- 3 Lexical Based -- 4 Corpora Based -- 5 Aspect Based -- 6 Trends -- 6.1 Social Semantic -- 6.2 Multi Domain -- 7 Conclusion -- References -- Productizing an Artificial Intelligence Solution for Intelligent Detail Extraction-Synergy of Symbolic and Sub-Symbolic Artificial Intelligence Techniques -- 1 Introduction -- 2 Problem Description of Intelligent Detail Extraction -- 3 Components of an IDE -- 4 Survey of Work on Extraction of Characters -- 5 Case Study: Invoice Processing -- 5.1 Details -- 5.2 Architecture -- 5.3 Challenges -- 5.4 Insight -- 5.5 Discovery and Productizing -- 6 Results and Conclusion -- References -- Digital Consumption Pattern and Impacts of Social Media: Descriptive Statistical Analysis -- 1 Introduction -- 2 Review of Literature -- 3 Access of Internet Across Generations -- 4 Impact of Internet on Business-Management -- 5 Impact of Internet on Kids, Adolescents and Adults -- 6 Internet Service Providers (ISP) in India During This COVID-19 Lockdown -- 7 Objective and Methodology of Primary Data Collection -- 8 Data Analysis -- 9 Bi-variate Analysis -- 10 Conclusion -- References -- Applicational Statistics in Data Science and Machine Learning -- 1 Introduction -- 1.1 Statistics and Exploratory Data Analysis -- 1.2 Statistical Tools and Techniques -- 2 Sampling Techniques -- 2.1 Population Versus Sample -- 2.2 Sampling Methods -- 3 Types of Variables -- 3.1 Random Variable -- 3.2 Categorical Data -- 3.3 Numerical Data -- 3.4 Qualitative Data -- 3.5 Quantitative Data -- 4 Visualizing Data -- 4.1 Categorical Data -- 4.2 Numerical Data -- 5 Measures of Central Tendency -- 5.1 Mean -- 5.2 Median -- 5.3 Mode -- 5.4 Variance -- 5.5 Standard Deviation.
6 Distributions in Statistics -- 6.1 Probability Distributions -- 6.2 PMF Versus PDF -- 6.3 Common Probability Distributions -- 6.4 Kurtosis -- 6.5 Skewness in Distributions -- 6.6 Scaling and Transformations -- 7 Outlier Treatment -- 7.1 Understanding Outliers -- 7.2 Detecting Outliers -- 8 Correlation Analysis -- 8.1 Steps for Correlation Analysis -- 8.2 Autocorrelation Versus Partial Correlation -- 9 Variance and Covariance Analysis -- 9.1 Analysis of Variance (ANOVA) -- 9.2 Analysis of Covariance (ANCOVA) -- 9.3 Multiple Analysis of Variance (MANOVA) -- 9.4 Multiple Analysis of Covariance (MANCOVA) -- 10 Chi-Square Analysis -- 11 Z-Score -- 12 Bias Versus Variance -- 12.1 Bias-Variance Trade-Off -- 12.2 Overfitting and Underfitting -- 13 Hypothesis Testing -- 13.1 Errors in Hypothesis Testing -- 14 Conclusion -- References -- Evolutionary Algorithms-Based Machine Learning Models -- 1 Introduction -- 2 Application Domains -- 2.1 Engineering Applications -- 2.2 Applied Sciences -- 2.3 Disaster Management -- 2.4 Finance and Economy -- 2.5 Health -- 3 Analysis and Discussion -- 3.1 Issues -- 3.2 Gap Analysis -- 4 Conclusion -- References -- Application to Predict the Impact of COVID-19 in India Using Deep Learning -- 1 Introduction -- 2 Proposed Work -- 3 Proposed Modules -- 4 Deep Learning -- 4.1 CNN Model -- 5 System Implementation -- 5.1 Decomposition of the COVID-19 Data -- 6 Results and Analysis -- 7 Conclusion and Future Direction -- References -- Role of Data Analytics in Bio Cyber Physical Systems -- 1 Introduction -- 2 Cyber Physical Systems -- 2.1 CPS and IoT -- 2.2 Concept Map of Cyber Physical Systems -- 2.3 Bio Cyber Physical Systems -- 3 Health Wearables -- 3.1 Fitness Trackers/Smart Watches -- 3.2 Types of Sensors -- 3.3 Activity Log -- 3.4 Advanced Sensors -- 3.5 Data Gathering -- 4 Diabetes -- 4.1 Complications of Diabetes. 5 Case Studies of Diabetic Complications -- 5.1 Heart-Attack -- 5.2 Seizures and Strokes -- 6 Role of Neural Networks in the Case Scenarios -- 6.1 Convolutional Neural Network -- 7 Multi-channel CNN -- 8 Complication Prediction Through LSTM -- 9 Conclusion -- References -- Evolution of Sentiment Analysis: Methodologies and Paradigms -- 1 Introduction -- 2 Foundational Methods -- 2.1 Supervised -- 2.2 Unsupervised and Semi-supervised -- 3 Applications -- 4 Comparative Study -- 4.1 Convolutional and Recurrent Neural Network (with LSTMs) -- 4.2 Word Embeddings/Representations -- 4.3 Deep Belief Networks -- 4.4 Rule-Based and Other Classifiers -- 5 Latest Developments and State-of-the-Art -- 5.1 Transfer Learning and Language Models -- 5.2 Attention and the Transformer -- 5.3 Transformers-Based Architectures -- 5.4 Limits of Transfer Learning -- 6 Conclusions -- References -- Healthcare Analytics: An Advent to Mitigate the Risks and Impacts of a Pandemic -- 1 Introduction -- 1.1 Healthcare Sector -- 1.2 Analytics Domain -- 1.3 Application of Analytics in Healthcare Domain -- 2 Background -- 3 Research on Pandemics and Their Impacts -- 4 Development of Healthcare Information System and Healthcare Analytics -- 5 Results -- 6 Illustration -- 7 Conclusion -- References -- Image Classification for Binary Classes Using Deep Convolutional Neural Network: An Experimental Study -- 1 Introduction -- 2 The Dataset -- 3 Literature Review -- 4 Architecture, Methodology, and Results -- 5 Conclusion -- References -- Leveraging Analytics for Supply Chain Optimization in Freight Industry -- 1 Introduction -- 2 Literature Survey -- 3 Data Storage and Big Data Ecosystem -- 4 Data Processing and Manipulation -- 5 Analytics and Insights -- 6 Machine Learning Implementation -- 6.1 Demand-Supply Matchmaking -- 6.2 Pricing and Incentives. 6.3 User Segmentations to Understand User Activities -- 7 Comparative Study of Different Techniques -- 8 Chapter Takeaways and Significance -- 9 Conclusion and Future Scope -- References -- Trends and Application of Data Science in Bioinformatics -- 1 Introduction -- 2 Data Science -- 3 Application of Data Science in Bioinformatics -- 3.1 Genomics -- 3.2 Transcriptomics -- 3.3 Proteomics -- 3.4 Metabolomics -- 3.5 Epigenetics -- 4 Techniques in Data Science that Can Be Used for Bioinformatics -- 4.1 Machine Learning and Deep Learning -- 4.2 Parallel Computing -- 4.3 Cloud Computing -- 5 Future Perspectives -- 6 Conclusion -- References -- Mathematical and Algorithmic Aspects of Scalable Machine Learning -- 1 Introduction -- 1.1 Challenges in Scalable Machine Learning -- 1.2 Reasons for Scaling up Machine Learning -- 2 The Infrastructure of Scalable Machine Learning -- 2.1 Distributed File System -- 2.2 Distributed Topology for Machine Learning -- 3 MapReduce -- 3.1 Benefits of MapReduce -- 4 Linear Regression -- 4.1 Parallel Version of Linear Regression -- 5 Clustering -- 5.1 K-Mean Clustering -- 5.2 Parallel K-mean for a Scalable Environment -- 5.3 DBSCAN -- 5.4 Parallel DBSCAN -- 6 Parallelization of Support Vector Machine -- 7 Decision Tree -- 8 Conclusion -- References -- An Implementation of Text Mining Decision Feedback Model Using Hadoop MapReduce -- 1 Introduction -- 1.1 Conventional Process Flow of Text Mining -- 1.2 Applications of Text Mining -- 2 Literature Survey -- 3 Proposed Decision Feedback-Based Text Mining Model -- 4 Big Data Technologies -- 4.1 Hadoop Distributed File System -- 4.2 MapReduce -- 4.3 Pig -- 4.4 Hive -- 4.5 Sqoop -- 4.6 Oozie -- 4.7 Flume -- 4.8 ZooKeeper -- 5 Word Stemming -- 5.1 Pre-requisites for Stemming -- 5.2 Classification of Stemming -- 6 Proposed Porter Stemmer with Partitioner Algorithm (PSP). 7 Hadoop Cluster Operation Modes -- 8 Environment Setup -- 9 Implementation -- 9.1 Data Collection -- 9.2 Text Parsing -- 9.3 Text Filtering -- 9.4 Text Transformation -- 9.5 Feature Selection -- 9.6 Evaluate -- 10 Result and Discussion -- 11 Conclusion and Future Work -- References -- Business Analytics: Process and Practical Applications -- 1 Introduction -- 1.1 Definition -- 1.2 Goal -- 2 Process -- 2.1 CRISP-DM (Cross-Industry Standard Process for Data Mining) -- 2.2 SEMMA (Sample, Explore, Modify, Model, Assess) -- 2.3 Comparative Study -- 2.4 Others Approaches -- 3 Types of Analytics -- 3.1 Descriptive Analytics -- 3.2 Diagnostic Analytics -- 3.3 Predictive Analytics -- 3.4 Prescriptive Analytics -- 3.5 Comparative Study -- 4 Domain and Applications -- 5 Recommendation System(s)-An approach -- 5.1 Types of Recommendation Systems -- 5.2 Benefits of Recommendation System -- 5.3 An Example -- 5.4 Challenges of Recommendation Systems -- 5.5 Comparative Study -- 6 Tools -- 7 Conclusion -- References -- Challenges and Issues of Recommender System for Big Data Applications -- 1 Introduction -- 1.1 Recommendation System Architecture -- 1.2 Big Data -- 2 The Cold Start Problem in Recommendation -- 2.1 New User Cold Start Problem -- 2.2 New Item Cold Start Problem -- 3 Scalability -- 3.1 Scalable Neighborhood Algorithm -- 4 Proactive Recommender System -- 4.1 Proactive Recommendation -- 4.2 Intelligent Proactive Recommender System -- 5 Conclusion -- References. |
Record Nr. | UNINA-9910485004303321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|