top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource
Disciplina 547.23
Soggetto topico Hydrogenation
Soggetto genere / forma Electronic books.
ISBN 3-527-82230-5
3-527-82229-1
3-527-82231-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 The Historical Development of Asymmetric Hydrogenation -- 1.1 Introduction -- 1.2 Early Work on the Recognition of Molecular Asymmetry -- 1.3 Origins and Early Development of Asymmetric Synthesis -- 1.4 Early Developments in the Asymmetric Heterogeneous Hydrogenation of Alkenes -- 1.5 The Development of Rhodium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.6 The Development of Ruthenium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.7 Conclusions -- References -- Chapter 2 Asymmetric (Transfer) Hydrogenation of Functionalized Alkenes During the Past Decade -- 2.1 Introduction -- 2.2 Asymmetric Hydrogenation with Rhodium Catalysts -- 2.2.1 Chiral Bisphosphine Ligands -- 2.2.2 Chiral Ferrocenyl Bisphosphine Ligands -- 2.2.3 Chiral Phosphine-Phosphoramidite and Phosphine-Phosphite Ligands -- 2.2.4 Self‐assembled Diphosphine Ligands -- 2.2.5 Monodentate Phosphorus Ligands -- 2.2.6 Asymmetric Transfer Hydrogenation with Rhodium Catalysts -- 2.3 Asymmetric Hydrogenation with Iridium Catalysts -- 2.3.1 Chiral Bidentate Ferrocenyl Ligands -- 2.3.2 Other Chiral Bidentate P,N‐ligands -- 2.3.3 Asymmetric Transfer Hydrogenation with Iridium Catalysts -- 2.4 Asymmetric Hydrogenation with Other Transition Metal Catalysts -- 2.4.1 Asymmetric Hydrogenation with Ruthenium Catalysts -- 2.4.2 Asymmetric Hydrogenation with Palladium Catalysts -- 2.5 Asymmetric (Transfer) Hydrogenation with First‐row Transition Metal Catalysts -- 2.6 Conclusion -- References -- Chapter 3 Asymmetric (Transfer) Hydrogenation of Functionalized Ketones -- 3.1 Introduction -- 3.2 Asymmetric (Transfer) Hydrogenation of Alkyl Ketones -- 3.3 Asymmetric Hydrogenation of α,β‐Unsaturated Ketones -- 3.3.1 Alkenyl Alkyl Ketones -- 3.3.2 Alkynyl Alkyl Ketones.
3.4 Asymmetric Hydrogenation of α‐Aminoketones -- 3.5 Asymmetric Hydrogenation of α‐hydroxyketones -- 3.6 Asymmetric Hydrogenation of α‐Oxophosphonates -- 3.7 Summary and Conclusions -- References -- Chapter 4 Asymmetric (Transfer) Hydrogenation of Aryl and Heteroaryl Ketones -- 4.1 Introduction -- 4.2 Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones -- 4.2.1 Chiral Ruthenium Catalysts -- 4.2.1.1 Chiral Ruthenium‐Diphosphine/Diamine Catalysts -- 4.2.1.2 Chiral Arene-Ruthenium‐Diamine Catalysts -- 4.2.1.3 Chiral Ruthenium-Phosphine-Oxazoline Catalysts -- 4.2.1.4 Chiral Ruthenium Catalysts Containing Tridentate Pincer Ligands -- 4.2.1.5 Chiral Ruthenium Catalysts Containing Tetradentate Ligands -- 4.2.2 Chiral Iridium Catalysts -- 4.2.3 Other Chiral Metal Catalysts -- 4.3 Asymmetric Transfer Hydrogenation of Aryl and Heteroaryl Ketones -- 4.3.1 Chiral Ruthenium Catalysts -- 4.3.1.1 Chiral Arene Ruthenium-N‐Sulfonylated 1,2‐Diamine Complexes -- 4.3.1.2 Chiral Ruthenium Catalysts with Other Bidentate Ligands -- 4.3.1.3 Chiral Ruthenium Catalysts Containing Tridentate and Tetradentate Ligands -- 4.3.2 Chiral Rhodium and Iridium Catalysts -- 4.3.2.1 Chiral Rhodium and Iridium Complexes Containing Diamine and Related Ligands -- 4.3.2.2 Chiral Rhodium and Iridium Catalysts Containing Other Ligands -- 4.3.3 Other Chiral Metal Catalysts -- 4.3.3.1 Chiral Iron Catalysts -- 4.3.3.2 Chiral Osmium Catalysts -- 4.3.3.3 Other Chiral Metal Catalysts -- 4.4 Summary -- References -- Chapter 5 Asymmetric (Transfer) Hydrogenation of Substituted Ketones Through Dynamic Kinetic Resolution -- 5.1 Introduction -- 5.2 α‐Substituted Ketones -- 5.3 α‐Substituted Cyclic Ketones -- 5.4 α,α'‐Disubstituted Cyclic Ketones -- 5.5 α,β‐Disubstituted Cyclic Ketones -- 5.6 α‐Substituted β‐Keto Esters -- 5.6.1 α‐Amino β‐Keto Esters -- 5.6.2 Other α‐Substituted β‐Keto Esters.
5.7 α‐Substituted β‐Keto Amides -- 5.8 α‐Substituted β‐Keto Sulfones, Sulfonamides, and Phosphonates -- 5.9 β‐Substituted α‐Keto Esters and Phosphonates -- 5.10 β‐Alkoxy Ketones -- 5.11 1,2‐Diketones -- 5.12 β‐Substituted Ketones -- 5.13 α‐Substituted Aldehydes -- 5.14 Summary and Conclusions -- References -- Chapter 6 Industrial Applications of Asymmetric (Transfer) Hydrogenation -- 6.1 Introduction -- 6.2 Industrial Applications of Asymmetric Hydrogenation -- 6.2.1 Asymmetric Hydrogenation of Enamide -- 6.2.1.1 l‐DOPA -- 6.2.1.2 Ramipril -- 6.2.1.3 Sitagliptin -- 6.2.1.4 (R)‐3‐Amino‐1‐butanol -- 6.2.1.5 (S)‐2,6‐Dimethyltyrosine -- 6.2.1.6 Apremilast -- 6.2.2 Asymmetric Hydrogenation of Ketone -- 6.2.2.1 Duloxetine -- 6.2.2.2 Dorzolamide -- 6.2.2.3 (R)‐1‐(3,5‐Bis(trifluoromethyl)‐phenyl)ethanol -- 6.2.2.4 4‐AA (Key Intermediate to Carbapenem Antibiotics) -- 6.2.2.5 Rivastigmine -- 6.2.2.6 Montelukast -- 6.2.2.7 Crizotinib -- 6.2.2.8 (R)‐Phenylephrine -- 6.2.2.9 Atorvastatin Calcium Salt -- 6.2.2.10 Orlistat -- 6.2.2.11 Ezetimibe -- 6.2.3 Asymmetric Hydrogenation of Olefin -- 6.2.3.1 l‐Menthol -- 6.2.3.2 Sacubitril -- 6.2.3.3 Naproxen, Ibuprofen, and Flurbiprofen -- 6.2.3.4 Ramelteon -- 6.2.3.5 Aliskiren -- 6.2.3.6 (+)‐cis‐Methyl Dihydrojasmonate -- 6.2.4 Asymmetric Hydrogenation of Imine -- 6.2.4.1 Solifenacin -- 6.2.4.2 (S)‐Metolachlor -- 6.2.5 Asymmetric Transfer Hydrogenation -- 6.3 Summary and Conclusions -- References -- Chapter 7 Tethered Ruthenium(II) Catalysts in Asymmetric Transfer Hydrogenation -- 7.1 Introduction: The Rationale Behind Tethered Catalysts Design -- 7.2 Tethered Ru(II) Catalysts and Their Syntheses -- 7.2.1 Synthetic Approaches to Tethered Catalysts -- 7.3 Applications to Asymmetric Reductions of Ketones and Imines -- 7.3.1 Reductions of Acetophenone Derivatives -- 7.3.1.1 Asymmetric Transfer Hydrogenation Using Formic Acid.
7.3.1.2 Reduction Under Aqueous Conditions -- 7.3.1.3 Hydrogenation with Hydrogen Gas -- 7.3.1.4 Racemic Catalysts for Reductions -- 7.3.1.5 Specific Applications to Complex Acetophenone Derivatives -- 7.3.2 Reductions of Acetylenic Ketones -- 7.3.3 Reductions of Benzophenone Ketones -- 7.3.4 Reductions of Diverse Ketones -- 7.3.5 Dynamic Kinetic Resolutions -- 7.3.6 Reductions of Imines -- 7.4 Conclusions and Outlook -- References -- Chapter 8 Homogeneous Asymmetric Hydrogenation of Heteroaromatic Compounds Catalyzed by Transition Metal Complexes -- 8.1 Introduction -- 8.2 Asymmetric Hydrogenation of Quinolines -- 8.3 Asymmetric Hydrogenation of Quinoxalines -- 8.4 Asymmetric Hydrogenation of Isoquinolines -- 8.5 Asymmetric Hydrogenation of Pyridines and Pyrazines -- 8.6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 8.7 Asymmetric Hydrogenation of Heteroarenes with Multi‐N‐Heterocycles -- 8.8 Asymmetric Hydrogenation of Other N‐Heteroarenes -- 8.9 Asymmetric Hydrogenation of O‐ and S‐Heteroarenes -- 8.10 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9 Asymmetric (Transfer) Hydrogenation of Imines -- 9.1 Asymmetric Hydrogenation of Imines -- 9.1.1 Iridium Catalysts -- 9.1.1.1 (P,P) Ligands -- 9.1.1.2 (P,N) Ligands -- 9.1.1.3 P‐Monodentate Ligands -- 9.1.2 Rhodium and Palladium Catalysts -- 9.2 Asymmetric Transfer Hydrogenation of Imines -- 9.2.1 Ruthenium Catalysts -- 9.2.2 Iridium and Rhodium Catalysts -- 9.2.3 Iron Catalysts -- 9.3 New Approaches -- 9.3.1 Metal Free -- 9.3.2 Biocatalytic Imine Reduction -- 9.3.2.1 Artificial Metalloenzymes -- 9.3.2.2 Imine Reductases (IREDs) -- 9.4 Summary and Conclusions -- References -- Chapter 10 Asymmetric Hydrogenation in Continuous‐Flow Conditions -- 10.1 Introduction -- 10.2 Chirally Modified Metal Surfaces -- 10.3 Well‐defined Transition‐metal Complexes.
10.3.1 Immobilized Systems -- 10.3.1.1 Covalently Anchored Ligands -- 10.3.1.2 Immobilization by the Augustine Method -- 10.3.1.3 Ionic Liquids as Matrices for Transition‐metal Complex Catalysts -- 10.3.2 Homogeneous Systems -- 10.3.3 Self‐supported Systems -- 10.4 Organocatalysts -- 10.5 Chiral Auxiliary‐controlled Asymmetric Hydrogenation in Flow -- 10.6 Summary and Outlook -- References -- Chapter 11 Organocatalytic Asymmetric Transfer Hydrogenation Reactions -- 11.1 Introduction -- 11.2 Reduction of C C Double Bonds -- 11.3 Reduction of C N Double Bonds -- 11.4 Cascade Reactions -- 11.5 Dearomatization -- 11.6 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910555167403321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Asymmetric hydrogenation and transfer hydrogenation / / edited by Virginie Ratovelomanana-Vidal, Phannarath Phansavath
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource
Disciplina 547.23
Soggetto topico Hydrogenation
ISBN 3-527-82230-5
3-527-82229-1
3-527-82231-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 The Historical Development of Asymmetric Hydrogenation -- 1.1 Introduction -- 1.2 Early Work on the Recognition of Molecular Asymmetry -- 1.3 Origins and Early Development of Asymmetric Synthesis -- 1.4 Early Developments in the Asymmetric Heterogeneous Hydrogenation of Alkenes -- 1.5 The Development of Rhodium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.6 The Development of Ruthenium Asymmetric Homogeneous Hydrogenation of Alkenes -- 1.7 Conclusions -- References -- Chapter 2 Asymmetric (Transfer) Hydrogenation of Functionalized Alkenes During the Past Decade -- 2.1 Introduction -- 2.2 Asymmetric Hydrogenation with Rhodium Catalysts -- 2.2.1 Chiral Bisphosphine Ligands -- 2.2.2 Chiral Ferrocenyl Bisphosphine Ligands -- 2.2.3 Chiral Phosphine-Phosphoramidite and Phosphine-Phosphite Ligands -- 2.2.4 Self‐assembled Diphosphine Ligands -- 2.2.5 Monodentate Phosphorus Ligands -- 2.2.6 Asymmetric Transfer Hydrogenation with Rhodium Catalysts -- 2.3 Asymmetric Hydrogenation with Iridium Catalysts -- 2.3.1 Chiral Bidentate Ferrocenyl Ligands -- 2.3.2 Other Chiral Bidentate P,N‐ligands -- 2.3.3 Asymmetric Transfer Hydrogenation with Iridium Catalysts -- 2.4 Asymmetric Hydrogenation with Other Transition Metal Catalysts -- 2.4.1 Asymmetric Hydrogenation with Ruthenium Catalysts -- 2.4.2 Asymmetric Hydrogenation with Palladium Catalysts -- 2.5 Asymmetric (Transfer) Hydrogenation with First‐row Transition Metal Catalysts -- 2.6 Conclusion -- References -- Chapter 3 Asymmetric (Transfer) Hydrogenation of Functionalized Ketones -- 3.1 Introduction -- 3.2 Asymmetric (Transfer) Hydrogenation of Alkyl Ketones -- 3.3 Asymmetric Hydrogenation of α,β‐Unsaturated Ketones -- 3.3.1 Alkenyl Alkyl Ketones -- 3.3.2 Alkynyl Alkyl Ketones.
3.4 Asymmetric Hydrogenation of α‐Aminoketones -- 3.5 Asymmetric Hydrogenation of α‐hydroxyketones -- 3.6 Asymmetric Hydrogenation of α‐Oxophosphonates -- 3.7 Summary and Conclusions -- References -- Chapter 4 Asymmetric (Transfer) Hydrogenation of Aryl and Heteroaryl Ketones -- 4.1 Introduction -- 4.2 Asymmetric Hydrogenation of Aryl and Heteroaryl Ketones -- 4.2.1 Chiral Ruthenium Catalysts -- 4.2.1.1 Chiral Ruthenium‐Diphosphine/Diamine Catalysts -- 4.2.1.2 Chiral Arene-Ruthenium‐Diamine Catalysts -- 4.2.1.3 Chiral Ruthenium-Phosphine-Oxazoline Catalysts -- 4.2.1.4 Chiral Ruthenium Catalysts Containing Tridentate Pincer Ligands -- 4.2.1.5 Chiral Ruthenium Catalysts Containing Tetradentate Ligands -- 4.2.2 Chiral Iridium Catalysts -- 4.2.3 Other Chiral Metal Catalysts -- 4.3 Asymmetric Transfer Hydrogenation of Aryl and Heteroaryl Ketones -- 4.3.1 Chiral Ruthenium Catalysts -- 4.3.1.1 Chiral Arene Ruthenium-N‐Sulfonylated 1,2‐Diamine Complexes -- 4.3.1.2 Chiral Ruthenium Catalysts with Other Bidentate Ligands -- 4.3.1.3 Chiral Ruthenium Catalysts Containing Tridentate and Tetradentate Ligands -- 4.3.2 Chiral Rhodium and Iridium Catalysts -- 4.3.2.1 Chiral Rhodium and Iridium Complexes Containing Diamine and Related Ligands -- 4.3.2.2 Chiral Rhodium and Iridium Catalysts Containing Other Ligands -- 4.3.3 Other Chiral Metal Catalysts -- 4.3.3.1 Chiral Iron Catalysts -- 4.3.3.2 Chiral Osmium Catalysts -- 4.3.3.3 Other Chiral Metal Catalysts -- 4.4 Summary -- References -- Chapter 5 Asymmetric (Transfer) Hydrogenation of Substituted Ketones Through Dynamic Kinetic Resolution -- 5.1 Introduction -- 5.2 α‐Substituted Ketones -- 5.3 α‐Substituted Cyclic Ketones -- 5.4 α,α'‐Disubstituted Cyclic Ketones -- 5.5 α,β‐Disubstituted Cyclic Ketones -- 5.6 α‐Substituted β‐Keto Esters -- 5.6.1 α‐Amino β‐Keto Esters -- 5.6.2 Other α‐Substituted β‐Keto Esters.
5.7 α‐Substituted β‐Keto Amides -- 5.8 α‐Substituted β‐Keto Sulfones, Sulfonamides, and Phosphonates -- 5.9 β‐Substituted α‐Keto Esters and Phosphonates -- 5.10 β‐Alkoxy Ketones -- 5.11 1,2‐Diketones -- 5.12 β‐Substituted Ketones -- 5.13 α‐Substituted Aldehydes -- 5.14 Summary and Conclusions -- References -- Chapter 6 Industrial Applications of Asymmetric (Transfer) Hydrogenation -- 6.1 Introduction -- 6.2 Industrial Applications of Asymmetric Hydrogenation -- 6.2.1 Asymmetric Hydrogenation of Enamide -- 6.2.1.1 l‐DOPA -- 6.2.1.2 Ramipril -- 6.2.1.3 Sitagliptin -- 6.2.1.4 (R)‐3‐Amino‐1‐butanol -- 6.2.1.5 (S)‐2,6‐Dimethyltyrosine -- 6.2.1.6 Apremilast -- 6.2.2 Asymmetric Hydrogenation of Ketone -- 6.2.2.1 Duloxetine -- 6.2.2.2 Dorzolamide -- 6.2.2.3 (R)‐1‐(3,5‐Bis(trifluoromethyl)‐phenyl)ethanol -- 6.2.2.4 4‐AA (Key Intermediate to Carbapenem Antibiotics) -- 6.2.2.5 Rivastigmine -- 6.2.2.6 Montelukast -- 6.2.2.7 Crizotinib -- 6.2.2.8 (R)‐Phenylephrine -- 6.2.2.9 Atorvastatin Calcium Salt -- 6.2.2.10 Orlistat -- 6.2.2.11 Ezetimibe -- 6.2.3 Asymmetric Hydrogenation of Olefin -- 6.2.3.1 l‐Menthol -- 6.2.3.2 Sacubitril -- 6.2.3.3 Naproxen, Ibuprofen, and Flurbiprofen -- 6.2.3.4 Ramelteon -- 6.2.3.5 Aliskiren -- 6.2.3.6 (+)‐cis‐Methyl Dihydrojasmonate -- 6.2.4 Asymmetric Hydrogenation of Imine -- 6.2.4.1 Solifenacin -- 6.2.4.2 (S)‐Metolachlor -- 6.2.5 Asymmetric Transfer Hydrogenation -- 6.3 Summary and Conclusions -- References -- Chapter 7 Tethered Ruthenium(II) Catalysts in Asymmetric Transfer Hydrogenation -- 7.1 Introduction: The Rationale Behind Tethered Catalysts Design -- 7.2 Tethered Ru(II) Catalysts and Their Syntheses -- 7.2.1 Synthetic Approaches to Tethered Catalysts -- 7.3 Applications to Asymmetric Reductions of Ketones and Imines -- 7.3.1 Reductions of Acetophenone Derivatives -- 7.3.1.1 Asymmetric Transfer Hydrogenation Using Formic Acid.
7.3.1.2 Reduction Under Aqueous Conditions -- 7.3.1.3 Hydrogenation with Hydrogen Gas -- 7.3.1.4 Racemic Catalysts for Reductions -- 7.3.1.5 Specific Applications to Complex Acetophenone Derivatives -- 7.3.2 Reductions of Acetylenic Ketones -- 7.3.3 Reductions of Benzophenone Ketones -- 7.3.4 Reductions of Diverse Ketones -- 7.3.5 Dynamic Kinetic Resolutions -- 7.3.6 Reductions of Imines -- 7.4 Conclusions and Outlook -- References -- Chapter 8 Homogeneous Asymmetric Hydrogenation of Heteroaromatic Compounds Catalyzed by Transition Metal Complexes -- 8.1 Introduction -- 8.2 Asymmetric Hydrogenation of Quinolines -- 8.3 Asymmetric Hydrogenation of Quinoxalines -- 8.4 Asymmetric Hydrogenation of Isoquinolines -- 8.5 Asymmetric Hydrogenation of Pyridines and Pyrazines -- 8.6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 8.7 Asymmetric Hydrogenation of Heteroarenes with Multi‐N‐Heterocycles -- 8.8 Asymmetric Hydrogenation of Other N‐Heteroarenes -- 8.9 Asymmetric Hydrogenation of O‐ and S‐Heteroarenes -- 8.10 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9 Asymmetric (Transfer) Hydrogenation of Imines -- 9.1 Asymmetric Hydrogenation of Imines -- 9.1.1 Iridium Catalysts -- 9.1.1.1 (P,P) Ligands -- 9.1.1.2 (P,N) Ligands -- 9.1.1.3 P‐Monodentate Ligands -- 9.1.2 Rhodium and Palladium Catalysts -- 9.2 Asymmetric Transfer Hydrogenation of Imines -- 9.2.1 Ruthenium Catalysts -- 9.2.2 Iridium and Rhodium Catalysts -- 9.2.3 Iron Catalysts -- 9.3 New Approaches -- 9.3.1 Metal Free -- 9.3.2 Biocatalytic Imine Reduction -- 9.3.2.1 Artificial Metalloenzymes -- 9.3.2.2 Imine Reductases (IREDs) -- 9.4 Summary and Conclusions -- References -- Chapter 10 Asymmetric Hydrogenation in Continuous‐Flow Conditions -- 10.1 Introduction -- 10.2 Chirally Modified Metal Surfaces -- 10.3 Well‐defined Transition‐metal Complexes.
10.3.1 Immobilized Systems -- 10.3.1.1 Covalently Anchored Ligands -- 10.3.1.2 Immobilization by the Augustine Method -- 10.3.1.3 Ionic Liquids as Matrices for Transition‐metal Complex Catalysts -- 10.3.2 Homogeneous Systems -- 10.3.3 Self‐supported Systems -- 10.4 Organocatalysts -- 10.5 Chiral Auxiliary‐controlled Asymmetric Hydrogenation in Flow -- 10.6 Summary and Outlook -- References -- Chapter 11 Organocatalytic Asymmetric Transfer Hydrogenation Reactions -- 11.1 Introduction -- 11.2 Reduction of C C Double Bonds -- 11.3 Reduction of C N Double Bonds -- 11.4 Cascade Reactions -- 11.5 Dearomatization -- 11.6 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910830693103321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui