top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Clinical trials with missing data : a guide for practitioners / / Michael O'Kelly, Bohdana Ratitch
Clinical trials with missing data : a guide for practitioners / / Michael O'Kelly, Bohdana Ratitch
Autore O'Kelly Michael
Pubbl/distr/stampa Chichester, West Sussex : , : John Wiley & Sons Inc., , 2014
Descrizione fisica 1 online resource (473 p.)
Disciplina 610.72/4
Altri autori (Persone) RatitchBohdana
Collana Statistics in practice
Soggetto topico Clinical trials
Clinical trials - Statistical methods
ISBN 1-118-76253-3
1-118-76251-7
1-118-76250-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Clinical Trials with Missing Data; Contents; Preface; References; Acknowledgments; Notation; Table of SAS code fragments; Contributors; 1 Whats the problem with missing data?; 1.1 What do we mean by missing data?; 1.1.1 Monotone and non-monotone missing data; 1.1.2 Modeling missingness, modeling the missing value and ignorability; 1.1.3 Types of missingness (MCAR, MAR and MNAR); 1.1.4 Missing data and study objectives; 1.2 An illustration; 1.3 Why cant I use only the available primary endpoint data?; 1.4 Whats the problem with using last observation carried forward?
1.5 Can we just assume that data are missing at random?1.6 What can be done if data may be missing not at random?; 1.7 Stress-testing study results for robustness to missing data; 1.8 How the pattern of dropouts can bias the outcome; 1.9 How do we formulate a strategy for missing data?; 1.10 Description of example datasets; 1.10.1 Example dataset in Parkinsons disease treatment; 1.10.2 Example dataset in insomnia treatment; 1.10.3 Example dataset in mania treatment; Appendix 1.A: Formal definitions of MCAR, MAR and MNAR; References; 2 The prevention of missing data; 2.1 Introduction
2.2 The impact of "too much" missing data 2.2.1 Example from human immunodeficiency virus; 2.2.2 Example from acute coronary syndrome; 2.2.3 Example from studies in pain; 2.3 The role of the statistician in the prevention of missing data; 2.3.1 Illustrative example from HIV; 2.4 Methods for increasing subject retention; 2.5 Improving understanding of reasons for subject withdrawal; Acknowledgments; Appendix 2.A: Example protocol text for missing data prevention; Section X Subject retention; References; 3 Regulatory guidance - a quicktour
3.1 International conference on harmonization guideline: Statistical principles for clinical trials: E93.2 The US and EU regulatory documents; 3.3 Key points in the regulatory documents on missing data; 3.4 Regulatory guidance on particular statistical approaches; 3.4.1 Available cases; 3.4.2 Single imputation methods; 3.4.3 Methods that generally assume MAR; 3.4.4 Methods that are used assuming MNAR; 3.5 Guidance about how to plan for missing data in a study; 3.6 Differences in emphasis between the NRC report and EU guidance documents; 3.6.1 The term "conservative"
3.6.2 Last observation carried forward 3.6.3 Post hoc analyses; 3.6.4 Non-monotone or intermittently missing data; 3.6.5 Assumptions should be readily interpretable; 3.6.6 Study report; 3.6.7 Training; 3.7 Other technical points from the NRC report; 3.7.1 Time-to-event analyses; 3.7.2 Tipping point sensitivity analyses; 3.8 Other US/EU/international guidance documents that refer to missing data; 3.8.1 Committee for medicinal products for human use guideline on anti-cancer products, recommendations on survival analysis
3.8.2 US guidance on considerations when research supported by office of human research protections is discontinued
Record Nr. UNINA-9910132240603321
O'Kelly Michael  
Chichester, West Sussex : , : John Wiley & Sons Inc., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Clinical trials with missing data : a guide for practitioners / / Michael O'Kelly, Bohdana Ratitch
Clinical trials with missing data : a guide for practitioners / / Michael O'Kelly, Bohdana Ratitch
Autore O'Kelly Michael
Pubbl/distr/stampa Chichester, West Sussex : , : John Wiley & Sons Inc., , 2014
Descrizione fisica 1 online resource (473 p.)
Disciplina 610.72/4
Altri autori (Persone) RatitchBohdana
Collana Statistics in practice
Soggetto topico Clinical trials
Clinical trials - Statistical methods
ISBN 1-118-76253-3
1-118-76251-7
1-118-76250-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Clinical Trials with Missing Data; Contents; Preface; References; Acknowledgments; Notation; Table of SAS code fragments; Contributors; 1 Whats the problem with missing data?; 1.1 What do we mean by missing data?; 1.1.1 Monotone and non-monotone missing data; 1.1.2 Modeling missingness, modeling the missing value and ignorability; 1.1.3 Types of missingness (MCAR, MAR and MNAR); 1.1.4 Missing data and study objectives; 1.2 An illustration; 1.3 Why cant I use only the available primary endpoint data?; 1.4 Whats the problem with using last observation carried forward?
1.5 Can we just assume that data are missing at random?1.6 What can be done if data may be missing not at random?; 1.7 Stress-testing study results for robustness to missing data; 1.8 How the pattern of dropouts can bias the outcome; 1.9 How do we formulate a strategy for missing data?; 1.10 Description of example datasets; 1.10.1 Example dataset in Parkinsons disease treatment; 1.10.2 Example dataset in insomnia treatment; 1.10.3 Example dataset in mania treatment; Appendix 1.A: Formal definitions of MCAR, MAR and MNAR; References; 2 The prevention of missing data; 2.1 Introduction
2.2 The impact of "too much" missing data 2.2.1 Example from human immunodeficiency virus; 2.2.2 Example from acute coronary syndrome; 2.2.3 Example from studies in pain; 2.3 The role of the statistician in the prevention of missing data; 2.3.1 Illustrative example from HIV; 2.4 Methods for increasing subject retention; 2.5 Improving understanding of reasons for subject withdrawal; Acknowledgments; Appendix 2.A: Example protocol text for missing data prevention; Section X Subject retention; References; 3 Regulatory guidance - a quicktour
3.1 International conference on harmonization guideline: Statistical principles for clinical trials: E93.2 The US and EU regulatory documents; 3.3 Key points in the regulatory documents on missing data; 3.4 Regulatory guidance on particular statistical approaches; 3.4.1 Available cases; 3.4.2 Single imputation methods; 3.4.3 Methods that generally assume MAR; 3.4.4 Methods that are used assuming MNAR; 3.5 Guidance about how to plan for missing data in a study; 3.6 Differences in emphasis between the NRC report and EU guidance documents; 3.6.1 The term "conservative"
3.6.2 Last observation carried forward 3.6.3 Post hoc analyses; 3.6.4 Non-monotone or intermittently missing data; 3.6.5 Assumptions should be readily interpretable; 3.6.6 Study report; 3.6.7 Training; 3.7 Other technical points from the NRC report; 3.7.1 Time-to-event analyses; 3.7.2 Tipping point sensitivity analyses; 3.8 Other US/EU/international guidance documents that refer to missing data; 3.8.1 Committee for medicinal products for human use guideline on anti-cancer products, recommendations on survival analysis
3.8.2 US guidance on considerations when research supported by office of human research protections is discontinued
Record Nr. UNINA-9910819122203321
O'Kelly Michael  
Chichester, West Sussex : , : John Wiley & Sons Inc., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui