Vai al contenuto principale della pagina

Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rapoport Michael Visualizza persona
Titolo: Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©2016
Descrizione fisica: 1 online resource (347 pages)
Disciplina: 512.2
Soggetto topico: p-divisible groups
Moduli theory
p-adic groups
Soggetto non controllato: Abelian variety
Addition
Alexander Grothendieck
Algebraic closure
Algebraic number field
Algebraic space
Algebraically closed field
Artinian ring
Automorphism
Base change
Basis (linear algebra)
Big O notation
Bilinear form
Canonical map
Cohomology
Cokernel
Commutative algebra
Commutative ring
Complex multiplication
Conjecture
Covering space
Degenerate bilinear form
Diagram (category theory)
Dimension (vector space)
Dimension
Duality (mathematics)
Elementary function
Epimorphism
Equation
Existential quantification
Fiber bundle
Field of fractions
Finite field
Formal scheme
Functor
Galois group
General linear group
Geometric invariant theory
Hensel's lemma
Homomorphism
Initial and terminal objects
Inner automorphism
Integral domain
Irreducible component
Isogeny
Isomorphism class
Linear algebra
Linear algebraic group
Local ring
Local system
Mathematical induction
Maximal ideal
Maximal torus
Module (mathematics)
Moduli space
Monomorphism
Morita equivalence
Morphism
Multiplicative group
Noetherian ring
Open set
Orthogonal basis
Orthogonal complement
Orthonormal basis
P-adic number
Parity (mathematics)
Period mapping
Prime element
Prime number
Projective line
Projective space
Quaternion algebra
Reductive group
Residue field
Rigid analytic space
Semisimple algebra
Sheaf (mathematics)
Shimura variety
Special case
Subalgebra
Subgroup
Subset
Summation
Supersingular elliptic curve
Support (mathematics)
Surjective function
Symmetric bilinear form
Symmetric space
Tate module
Tensor algebra
Tensor product
Theorem
Topological ring
Topology
Torsor (algebraic geometry)
Uniformization theorem
Uniformization
Unitary group
Weil group
Zariski topology
Classificazione: SI 830
Persona (resp. second.): ZinkThomas
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Contents -- Introduction -- 1. p-adic symmetric domains -- 2. Quasi-isogenies of p-divisible groups -- 3. Moduli spaces of p-divisible groups -- Appendix: Normal forms of lattice chains -- 4. The formal Hecke correspondences -- 5. The period morphism and the rigid-analytic coverings -- 6. The p-adic uniformization of Shimura varieties -- Bibliography -- Index
Sommario/riassunto: In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples.
Titolo autorizzato: Period Spaces for p-divisible Groups (AM-141), Volume 141  Visualizza cluster
ISBN: 1-4008-8260-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154754603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; no. 141.