Vai al contenuto principale della pagina
Autore: | Rapoport Michael |
Titolo: | Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©2016 | |
Descrizione fisica: | 1 online resource (347 pages) |
Disciplina: | 512.2 |
Soggetto topico: | p-divisible groups |
Moduli theory | |
p-adic groups | |
Soggetto non controllato: | Abelian variety |
Addition | |
Alexander Grothendieck | |
Algebraic closure | |
Algebraic number field | |
Algebraic space | |
Algebraically closed field | |
Artinian ring | |
Automorphism | |
Base change | |
Basis (linear algebra) | |
Big O notation | |
Bilinear form | |
Canonical map | |
Cohomology | |
Cokernel | |
Commutative algebra | |
Commutative ring | |
Complex multiplication | |
Conjecture | |
Covering space | |
Degenerate bilinear form | |
Diagram (category theory) | |
Dimension (vector space) | |
Dimension | |
Duality (mathematics) | |
Elementary function | |
Epimorphism | |
Equation | |
Existential quantification | |
Fiber bundle | |
Field of fractions | |
Finite field | |
Formal scheme | |
Functor | |
Galois group | |
General linear group | |
Geometric invariant theory | |
Hensel's lemma | |
Homomorphism | |
Initial and terminal objects | |
Inner automorphism | |
Integral domain | |
Irreducible component | |
Isogeny | |
Isomorphism class | |
Linear algebra | |
Linear algebraic group | |
Local ring | |
Local system | |
Mathematical induction | |
Maximal ideal | |
Maximal torus | |
Module (mathematics) | |
Moduli space | |
Monomorphism | |
Morita equivalence | |
Morphism | |
Multiplicative group | |
Noetherian ring | |
Open set | |
Orthogonal basis | |
Orthogonal complement | |
Orthonormal basis | |
P-adic number | |
Parity (mathematics) | |
Period mapping | |
Prime element | |
Prime number | |
Projective line | |
Projective space | |
Quaternion algebra | |
Reductive group | |
Residue field | |
Rigid analytic space | |
Semisimple algebra | |
Sheaf (mathematics) | |
Shimura variety | |
Special case | |
Subalgebra | |
Subgroup | |
Subset | |
Summation | |
Supersingular elliptic curve | |
Support (mathematics) | |
Surjective function | |
Symmetric bilinear form | |
Symmetric space | |
Tate module | |
Tensor algebra | |
Tensor product | |
Theorem | |
Topological ring | |
Topology | |
Torsor (algebraic geometry) | |
Uniformization theorem | |
Uniformization | |
Unitary group | |
Weil group | |
Zariski topology | |
Classificazione: | SI 830 |
Persona (resp. second.): | ZinkThomas |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Frontmatter -- Contents -- Introduction -- 1. p-adic symmetric domains -- 2. Quasi-isogenies of p-divisible groups -- 3. Moduli spaces of p-divisible groups -- Appendix: Normal forms of lattice chains -- 4. The formal Hecke correspondences -- 5. The period morphism and the rigid-analytic coverings -- 6. The p-adic uniformization of Shimura varieties -- Bibliography -- Index |
Sommario/riassunto: | In this monograph p-adic period domains are associated to arbitrary reductive groups. Using the concept of rigid-analytic period maps the relation of p-adic period domains to moduli space of p-divisible groups is investigated. In addition, non-archimedean uniformization theorems for general Shimura varieties are established. The exposition includes background material on Grothendieck's "mysterious functor" (Fontaine theory), on moduli problems of p-divisible groups, on rigid analytic spaces, and on the theory of Shimura varieties, as well as an exposition of some aspects of Drinfelds' original construction. In addition, the material is illustrated throughout the book with numerous examples. |
Titolo autorizzato: | Period Spaces for p-divisible Groups (AM-141), Volume 141 |
ISBN: | 1-4008-8260-5 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154754603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |