top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Field Effect Transistors
Field Effect Transistors
Autore Dhanaselvam P. Suveetha
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (529 pages)
Disciplina 621.3815284
Altri autori (Persone) RaoK. Srinivasa
RahiShiromani Balmukund
YadavDharmendra Singh
ISBN 9781394248506
1394248504
9781394248490
1394248490
9781394248483
1394248482
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Classical MOSFET Evolution: Foundations and Advantages -- 1.1 Introduction of Classical MOSFET -- 1.1.1 The Advantages of MOSFET -- 1.2 Dual-Gate MOSFET -- 1.2.1 Advantage -- 1.2.1.1 Scalability -- 1.2.1.2 Improvement of Gain -- 1.2.1.3 Low-Power Consumption -- 1.2.1.4 Better ION/IOFF -- 1.2.1.5 Higher Switching Speed -- 1.2.2 Application -- 1.2.2.1 RF Mixer -- 1.2.2.2 RF Amplifier -- 1.2.2.3 Controllable Gain -- 1.3 Gate-All-Around MOSFET -- 1.3.1 The Fabrication Procedure of GAA MOSFETs -- 1.3.2 Advantage of Gate-All-Around MOSFETs -- 1.3.2.1 Excellent Performance -- 1.3.2.2 The Ability to Shrink -- 1.3.2.3 Adjustable Nanosheet -- 1.3.2.4 Monitoring the Channel by Gate -- 1.4 ID-VG and ID-VG Characteristics of Conventional MOSFETs -- 1.4.1 Introduction to ID-VG Curves -- 1.4.2 Threshold Voltage and Saturation Region -- 1.4.2.1 Role of Threshold Voltage -- 1.4.2.2 Exploring the Saturation Region -- 1.5 Capacitance Characteristics of Conventional MOSFETs -- 1.5.1 The Role of Capacitance in MOSFET Behavior -- 1.5.2 CV Modeling of MOSFET Transistors -- 1.6 Frequency-Dependent Behavior -- 1.6.1 The Importance of Frequency-Dependent Analysis of MOSFET Transistors -- 1.6.2 Applications and Implications -- 1.6.2.1 RF Front-Ends -- 1.6.2.2 High-Speed Data Transmission -- 1.7 Conclusion -- References -- Chapter 2 Marvels of Modern Semiconductor Field-Effect Transistors -- 2.1 Introduction -- 2.2 Tunnel Field-Effect Transistor -- 2.2.1 Tunneling Junction -- 2.3 Junctionless Transistors -- 2.3.1 Physics and Properties -- 2.4 GAA-FETs the Origin of Nanowire FETs and Nanosheet FETs -- 2.5 Significance in Modern Electronics -- 2.6 Main Electrical Characteristics of GAA-FETs -- 2.7 GAA-FET Classification -- 2.8 Nanowire Field-Effect Transistors (NW-FETs).
2.9 Nanosheet Field-Effect Transistors (NS-FETs) -- 2.10 Electrical Characteristics -- 2.11 Conclusion -- References -- Chapter 3 Introduction to Modern FET Technologies -- 3.1 Introduction -- 3.2 FinFETs (Fin Field-Effect Transistors) -- 3.2.1 The Evolution from Planar to FinFET -- 3.2.2 Unleashing the Power of FinFETs -- 3.2.3 Smaller Nodes, Greater Integration -- 3.2.4 Applications Across Industries -- 3.2.5 Challenges and Future Prospects -- 3.3 Unveiling Multi-Gate MOSFETs: A Symphony of Efficiency -- 3.3.1 Enter Multi-Gate MOSFETs -- 3.3.2 Three-Dimensional Mastery -- 3.3.3 Superior Switching Speeds -- 3.3.4 Power Efficiency on Point -- 3.3.5 Versatility Across Applications -- 3.3.6 The Future Landscape -- 3.4 Unveiling Nanoscale MOSFETs: The Miniaturization Marvel -- 3.4.1 Scaling Down to the Nanoscale -- 3.4.2 Quantum Tunneling and Beyond -- 3.4.3 FinFETs and Beyond -- 3.4.4 High-Performance Computing -- 3.4.5 Challenges and Innovations -- 3.4.6 The Future of Nanoscale MOSFETs -- 3.5 High-Electron Mobility Transistors (HEMTs): A Leap into the Future of FET Technology -- 3.5.1 The Essence of HEMTs -- 3.5.2 The Heterojunction Advantage -- 3.5.3 Applications Across Industries -- 3.5.4 Key Advantages of HEMTs -- 3.5.5 Future Prospects -- 3.6 Graphene Field-Effect Transistors (GFETs): Pioneering the Future of FET Technology -- 3.6.1 The Wonder of Graphene -- 3.6.2 The Structure of GFETs -- 3.6.3 Key Advantages of GFETs -- 3.6.4 Applications Across Industries -- 3.6.5 Challenges and Future Developments -- 3.7 Tunnel Field-Effect Transistors (TFETs): Navigating the Quantum Realm of Future Electronics -- 3.7.1 The Principle of Quantum Tunneling -- 3.7.2 How TFETs Work -- 3.7.3 Key Advantages of TFETs -- 3.7.4 Applications Across Industries -- 3.7.5 Challenges and Future Prospects.
3.8 Silicon Carbide (SiC) MOSFETs: Transforming Power Electronics for a Greener Future -- 3.8.1 The Power of Silicon Carbide -- 3.8.2 Advantages of SiC MOSFETs -- 3.8.3 Applications Across Industries -- 3.8.4 Challenges and Future Developments -- 3.9 Power MOSFETs: Empowering the Future of High-Efficiency Power Electronics -- 3.9.1 The Basics of Power MOSFETs -- 3.9.2 Key Features of Power MOSFETs -- 3.9.3 Applications Across Industries -- 3.9.4 Challenges and Future Developments -- 3.10 Gallium Nitride (GaN) High-Electron Mobility Transistors (HEMTs): Unleashing the Power of Wide Bandgap Semiconductors -- 3.10.1 The Wonders of Wide Bandgap -- 3.10.2 Key Features of GaN HEMTs -- 3.10.3 Applications Across Industries -- 3.10.4 Challenges and Future Prospects -- 3.11 Organic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible and Sustainable Electronics -- 3.11.1 The Organic Advantage -- 3.11.2 Key Features of OFETs -- 3.11.3 Applications Across Industries -- 3.11.4 Challenges and Future Directions -- 3.12 Conclusion -- Bibliography -- Chapter 4 Scaling of Field-Effect Transistors -- 4.1 Introduction -- 4.2 Short-Channel Effect -- 4.3 FinFET Overview -- 4.3.1 History of Development -- 4.3.2 Difficulties and Challenges -- 4.4 GAAFET Overview -- 4.4.1 History of Development -- 4.4.2 Difficulties and Challenges -- 4.5 Conclusions -- References -- Chapter 5 Future Prospective Beyond CMOS Technology Design -- 5.1 Introduction -- 5.2 Spintronics -- 5.2.1 Applications -- 5.3 Carbon Nanotube Transistors -- 5.4 Memristor -- 5.4.1 Working Principle -- 5.5 Applications -- 5.6 Quantum Dots -- 5.6.1 Operation and Applications -- References -- Chapter 6 Nanowire Transistors -- 6.1 Introduction -- 6.2 Nanowire FETs -- 6.2.1 Device Design -- 6.3 Organic Nanowire Transistors -- 6.4 Conclusion -- References.
Chapter 7 Advancement of Nanotechnology and NP-Based Biosensors -- 7.1 Introduction -- 7.2 Metal Oxide-Based Biosensors -- 7.3 Zinc Oxide-Based Biosensor -- 7.3.1 0D Nanostructures (Zero-Dimensional) -- 7.3.2 1D Nanostructures (One-Dimensional) -- 7.3.3 2D Nanostructures (Two-Dimensional) -- 7.3.4 3D Nanostructures (Three-Dimensional) -- 7.4 AuNP-Based Biosensors -- 7.5 GR-Based Biosensors -- References -- Chapter 8 Technology Behind Junctionless Semiconductor Devices -- 8.1 Introduction -- 8.2 Operating Modes Based on the Structure of the Device -- 8.3 TCAD Simulations -- 8.4 Effect of Temperature -- 8.5 Results and Discussions -- 8.6 Conclusion -- References -- Chapter 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology -- 9.1 Introduction -- 9.1.1 The Evolution of Semiconductor Technology -- 9.1.2 Fundamentals of MOS Transistors -- 9.1.2.1 Structure of a MOS Transistor -- 9.1.2.2 Operation of a MOS Transistor -- 9.1.3 Overview of Junctionless Metal-Oxide-Semiconductor Transistors -- 9.2 Junctionless MOS Transistors: Principles and Concepts -- 9.2.1 Structure of Junctionless Transistor -- 9.2.2 Junctionless Nanowire Transistor (JNT) -- 9.2.3 Bulk Planar Junctionless Transistor (BPJLT) -- 9.3 Fabrication Techniques for Junctionless Transistors -- 9.3.1 Characteristics of Junctionless Transistors -- 9.3.1.1 Gated Resistor Characteristics -- 9.3.1.2 Gated Resistor and Intrinsic Device Delay Time -- 9.3.1.3 Variation of a Doping Concentration in an n-Type Gated Resistor -- 9.3.1.4 Transfer Characteristics -- 9.3.2 Comparison of Junction and Junctionless Transistor -- 9.4 Real-World Implementations of Junctionless Transistors -- 9.4.1 Current Limitations and Obstacles -- 9.5 Conclusion -- 9.6 Applications -- References.
Chapter 10 Performance Estimation of Junctionless Tunnel Field-Effect Transistor (JL-TFET): Device Structure and Simulation Through TCAD -- 10.1 Introduction -- 10.1.1 Introduction to TFET -- 10.1.1.1 TFET Structure and Working -- 10.2 Junctionless TFETs -- 10.2.1 Motivation for Junctionless TFETs -- 10.2.2 Existing Structure of Junctionless TFET -- 10.3 Design Structure of Junctionless TFETs -- 10.3.1 Junctionless TFET Structure -- 10.4 Conclusion -- References -- Chapter 11 Science and Technology of Tunnel Field-Effect Transistors -- 11.1 Phenomenon of Quantum Tunneling -- 11.2 Tunneling Mathematics -- 11.2.1 Schrodinger's Equation -- 11.2.2 Tunneling Through Rectangular Potential Barrier -- 11.2.3 WKB Approximation Model -- 11.2.4 Local Band-to-Band Tunneling Models -- 11.2.4.1 Kane's Model -- 11.2.5 Non-Local Band-To-Band Tunneling Models -- 11.3 Tunnel Field-Effect Transistors (TFETs) -- 11.3.1 Limitations of MOSFET -- 11.3.2 Mechanism and Structure of TFET -- 11.3.3 Advantages and Limitations of TFET -- 11.3.4 Types of Tunneling -- 11.3.4.1 Point Tunneling -- 11.3.4.2 Line Tunneling -- 11.3.5 Methods of Enhancing Performance of TFETs -- 11.3.5.1 Doping Engineering -- 11.3.5.2 Geometry Engineering -- 11.3.5.3 Material and Band Engineering -- 11.3.5.4 Employing Techniques to Enhance TFET Performance -- 11.3.6 RF and Small Signal Analysis of TFETs -- 11.3.6.1 Small Signal Model of N-TFET in ON/OFF State -- 11.3.7 Applications of TFET Devices -- 11.4 Conclusion -- References -- Chapter 12 Circuits Designed for Energy-Harvesting Applications That Leverage TFETs to Achieve Extremely Low Power Consumption -- 12.1 Introduction -- 12.1.1 The Roadmap for Technology Scaling -- 12.1.2 New Approaches for Upcoming Technology Generations -- 12.2 Energy Harvesting in an Era Beyond Moore's Law.
12.3 Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy Harvesting.
Record Nr. UNINA-9911020194103321
Dhanaselvam P. Suveetha  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integrated Devices for Artificial Intelligence and VLSI : VLSI Design, Simulation and Applications
Integrated Devices for Artificial Intelligence and VLSI : VLSI Design, Simulation and Applications
Autore Raj Balwinder
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (382 pages)
Disciplina 006.3
Altri autori (Persone) TripathiSuman Lata
ChaudharyTarun
RaoK. Srinivasa
SinghMandeep
Soggetto topico Artificial intelligence - Data processing
Integrated circuits - Very large scale integration
ISBN 1-394-20515-5
1-394-20514-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Comparative Analysis of MOSFET and FinFET -- 1.1 Introduction -- 1.1.1 Scaling Issue -- 1.1.2 Problems in MOSFET -- 1.2 Double Gate -- 1.3 Advantages and Disadvantage of MOSFET -- 1.4 MOSFET Drawbacks -- 1.5 FinFET -- 1.6 SOI-FinFET -- 1.7 Issues with FinFET-Based Technology -- 1.8 Advantage of FinFET -- 1.9 Drawbacks of FinFET -- 1.10 Applications of FinFET Technology -- 1.11 Conclusion -- References -- Chapter 2 Nanosheet FET for Future Technology Scaling -- 2.1 Introduction -- 2.2 Device Description and Simulation Parameters -- 2.2.1 Analysis of the Results Obtained -- 2.2.2 Impact of Variation in Width Across Various Thickness Values on Device Characteristics -- 2.2.3 Transfer Characteristics -- 2.2.4 Impact of Geometrical Variations on ON Current -- 2.2.5 Impact of Geometrical Variations on OFF-Current -- 2.2.6 Impact of Geometrical Variations on Switching Ratio -- 2.2.7 Impact of Geometrical Variations on Threshold Voltage -- 2.2.8 Impact of Geometrical Variations on Subthreshold Swing -- 2.2.9 Impact of Geometrical Variations on DIBL -- 2.2.10 Comparison with Previous Works -- 2.3 Conclusions -- References -- Chapter 3 Comparison of Different TFETs: An Overview -- 3.1 Introduction -- 3.2 Tunnel FET -- 3.3 Gate Engineering -- 3.3.1 Oxide-Thickness and Dielectric-Constant of Gateoxide -- 3.3.2 Multiple Gates -- 3.3.3 Spacer Engineering -- 3.4 Tunneling-Junction Engineering -- 3.4.1 Doping of Source -- 3.4.2 Heterojunctions -- 3.5 Materials Engineering -- 3.5.1 Germanium -- 3.5.2 III-V Semiconductors -- 3.5.3 Nanowires -- 3.6 Conclusion -- References -- Chapter 4 GaAs Nanowire Field Effect Transistor -- 4.1 Introduction -- 4.1.1 Semiconductor Nanowires -- 4.1.2 Metal Nanowires -- 4.1.3 Oxide Nanowires -- 4.1.4 Hybrid Nanowires.
4.1.5 Biological Nanowires -- 4.2 Properties of Nanowires -- 4.2.1 Electrical Properties of Nanowire -- 4.2.2 Mechanical Properties -- 4.2.3 Optical Properties of Nanowire -- 4.2.4 Nonlinear Optical Properties -- 4.2.5 Photovoltaic Properties -- 4.3 Nanowire-FET -- 4.4 Proposed Work (GaAs Nanowire-FET) -- 4.5 Conclusion -- References -- Chapter 5 Graphene Nanoribbon for Future VLSI Applications: A Review -- 5.1 Introduction -- 5.1.1 Significance of Nano-Scale Reign -- 5.1.2 Importance of Repeaters -- 5.1.3 Interconnect Models -- 5.1.4 Lumped Model -- 5.1.5 Distributed Model -- 5.1.6 Aluminum and Copper as Interconnects -- 5.1.7 Graphene Nanoribbon as Interconnects -- 5.1.8 Classification of GNRs -- 5.1.9 Fundamental Physics -- 5.1.10 According to Structure and Conductivity -- 5.1.11 GNR Field Effect Transistor (GNRFET) -- 5.1.12 Model Development of GNRFET -- 5.1.13 Pros and Cons of GNRFET -- 5.2 Future Applications of Graphene and Graphene-Based FETs -- References -- Chapter 6 Ferroelectric Random Access Memory (FeRAM) -- 6.1 Introduction -- 6.1.1 Basic Characteristics of Ferroelectric Capacitors -- 6.1.2 FRAM Fabrication Process -- 6.2 Structure of Ferroelectric Memory Cells in Capacitor-Type FRAM Devices -- 6.2.1 A Capacitor-Type FRAM with a Memory Cell Resembling DRAM -- 6.3 Write/Read Operations in the FRAM Using a Capacitor- Type Memory Cell that Resembles a DRAM -- 6.4 Other Capacitor-Type FRAM -- 6.5 FRAM of FET Type -- 6.6 Memory Utilizing a Ferroelectric Tunnel Junction -- 6.6.1 Previous Ferroelectric Memory Designs -- 6.7 Cross Point Matrix Array -- 6.8 Ferroelectric Shadow RAMs -- 6.9 2T2C Ferroelectric RAM Architecture -- 6.9.1 Evaluation of FRAM Devices' Reliability -- 6.9.2 Comparative Analysis of FeRAM to Other Memory Technologies -- 6.10 FeRAM vs. EEPROM -- 6.11 FeRAM vs. Static RAM -- 6.12 FeRAM vs. Dynamic RAM.
6.13 FeRAM vs. Flash Memory -- 6.13.1 Uses of FRAM Devices -- 6.14 Conclusion and Upcoming Trends -- References -- Chapter 7 Applications of AI/ML Algorithms in VLSI Design and Technology -- 7.1 Introduction -- 7.2 Artificial Intelligence and Machine Learning -- 7.3 AI/ML Algorithms -- 7.4 Supervised Machine Learning (SML) -- 7.5 Classification Techniques -- 7.6 K-Nearest Neighbors (KNN) -- 7.7 Support Vector Machine (SVM) -- 7.8 Linearly Separable Classification -- 7.9 Decision Tree Classifier (DTC) -- 7.10 Performance Measures in Classification -- 7.11 Unsupervised Machine Learning (UML) -- 7.12 Hierarchical Clustering -- 7.13 Partitional Clustering -- 7.14 K-Means -- 7.15 Fuzzy (soft) Clustering -- 7.16 Cluster Validation Measures -- 7.17 Internal Clustering Validation Measures -- 7.18 External Clustering Validation Criteria -- 7.19 Limitation and Challenges - VLSI -- References -- Chapter 8 Advancement of Neuromorphic Computing Systems with Memristors -- 8.1 Introduction -- 8.1.1 Evolution in Neural Networks -- 8.1.2 Study Plan and Difficulties in Exhibiting Effective Neuromorphic Computing Systems -- 8.1.3 Hardware for Neuromorphic Systems -- 8.1.4 Device-Level Perspective -- 8.1.5 Electrical Circuits to Realize Neurons -- 8.1.6 Broad Applications of Neuromorphic Computing -- 8.2 Summary -- References -- Chapter 9 Neuromorphic Computing and Its Application -- 9.1 Introduction -- 9.2 Evolution of Neuroinspired Computing Chips -- 9.3 Science Behind Brain Physics -- 9.4 Limitations of Semiconductor Devices -- 9.5 Various Combination of Networks -- 9.5.1 ANN-SNN Hybrid -- 9.5.2 Convolutional Neural Network (CNN)-Recurrent Neural Network (RNN) Hybrid -- 9.5.3 Deep Reinforcement Learning (DRL) Hybrid -- 9.5.4 Ensemble Hybrid -- 9.5.5 Different Types of Neural Networks -- 9.6 Artificial Intelligence.
9.7 A Summary of Neuromorphic Hardware Methodologies -- 9.8 Neuromorphic Computing in Robotics -- 9.8.1 Sensor Processing and Perception -- 9.8.2 Motor Control and Movement -- 9.8.3 Neuromorphic Hardware Advances -- 9.8.4 Brain-Inspired Learning Algorithms -- 9.9 Challenges in Neuromorphic Computing -- 9.9.1 Language Understanding and Interpretation -- 9.9.2 Sentiment Analysis and Emotion Recognition -- 9.9.3 Natural Language Generation -- 9.9.4 Language Translation and Multilingual Processing -- 9.9.5 Dialogue Systems and Conversational Agents -- 9.9.6 Language Modeling and Prediction -- 9.9.7 Text Summarization and Information Extraction -- 9.10 Applications of Neuromorphic Computing -- 9.10.1 Medicines -- 9.10.2 Artificial Intelligence [AI] -- 9.10.3 Imaging -- 9.10.4 Sensor Processing and Perception -- 9.10.5 Motor Control and Movement -- 9.10.6 Autonomous Navigation and Mapping -- 9.10.7 Human-Robot Interaction and Collaboration -- 9.10.8 Adaptive and Learning Capabilities -- 9.10.9 Task Planning and Decision Making -- 9.10.10 Robustness and Fault Tolerance -- 9.10.11 Some More Applications -- 9.11 Conclusion -- References -- Chapter 10 Performance Evaluation of Prototype Microstrip Patch Antenna Fabrication Using Microwave Dielectric Ceramic Nanocomposite Materials for X-Band Applications -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.3 Results and Discussion -- 10.4 Conclusions -- References -- Chapter 11 Build and Deploy a Smart Speaker with Biometric Authentication and Advanced Voice Interaction Capabilities -- 11.1 Introduction -- 11.2 Cybersecurity Risk as Smart Speakers Don't Have an Authentication Process -- 11.3 Related Work -- 11.4 Overview of Biometric Authentication and the Voice Algorithm-Based Smart Speaker -- 11.5 Conclusion and Discussion -- Acknowledgements -- References.
Chapter 12 Boron-Based Nanomaterials for Intelligent Drug Delivery Using Computer-Aided Tools -- 12.1 Introduction -- 12.2 Computational Details -- 12.3 Results and Discussion -- 12.3.1 Interaction of Anisamide with 7-Membered Ring of B40 -- 12.3.2 Interaction of Anisamide with 6-Membered Ring of B40 -- 12.3.3 Interaction of 5F-Uracil with the Heptagonal Ring of B40+7AN Complex (AN on Heptagonal Ring) -- 4012.3.4 Interaction of 5F-Uracil with the Hexagonal Ring of B40+7AN Complex (AN on Heptagonal Ring) -- 12.3.5 Interaction of 5F-Uracil with the Heptagonal Ring of B40+6AN Complex (AN on Hexagonal Ring) -- 12.3.6 Interaction of 5F-Uracil with the Hexagonal Ring of B40+6AN Complex (AN on Hexagonal Ring) -- 12.3.7 Stability in Aqueous Solution -- 12.3.8 Drug Release -- Acknowledgement -- Conflict of Interest -- References -- Chapter 13 Design and Analysis of Rectangular Wave Guide Using an HFSS Simulator -- 13.1 Background -- 13.2 Introduction -- 13.3 Mathematical Computations -- 13.4 Numerical Analysis -- 13.5 Conclusion -- References -- Index -- Also of Interest -- EULA.
Record Nr. UNINA-9911020437803321
Raj Balwinder  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanodevices for Integrated Circuit Design
Nanodevices for Integrated Circuit Design
Autore Tripathi Suman Lata
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (304 pages)
Altri autori (Persone) KumarAbhishek
RaoK. Srinivasa
MudimelaPrasantha R
Soggetto topico Nanotechnology
Integrated circuits
ISBN 9781394186389
139418638X
9781394186396
1394186398
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgements -- Chapter 1 Growth of Nano-Wire Field Effect Transistor in 21st Century -- 1.1 Introduction -- 1.2 Initial Works on Nanowire Field-Effect-Transistors (NW-FET) -- 1.2(A) Theoretical and Simulation Studies on Nanowire FET (NW-FET) -- 1.2(B) Fabrication of Nanowire Field-Effect-Transistor (NW-FET) -- 1.3 Application of Nanowire Field-Effect-Transistors (NW-FET) -- 1.4 Conclusion -- References -- Chapter 2 Impact of Silicon Nanowire-Based Transistor in IC Design Perspective -- 2.1 Introduction -- 2.2 Nanoscale Devices -- 2.2.1 Carbon Nanostructures -- 2.2.2 Nanoelectromechanical Systems -- 2.2.3 Graphene-Based Transistors -- 2.2.4 Silicon Nanowire Based Devices -- 2.3 Nanowire Heterostructures and Silicon Nanowires -- 2.3.1 Characteristics of SiNWs -- 2.3.2 Fabrication -- 2.3.3 Applications of SiNWs -- 2.4 Performance Analysis of Si Nanowire with SOI FET -- 2.5 Conclusion -- References -- Chapter 3 Kink Effect in Field Effect Transistors: Different Models and Techniques -- 3.1 Introduction -- 3.2 Techniques of Kink Effect -- 3.2.1 Current-Voltage Technique -- 3.2.2 Pulsed I-V Technique -- 3.2.3 Capacitance-Voltage Technique -- 3.3 Different Models of Kink Effect -- 3.4 Kink Effect in MOS Capacitors -- 3.4.1 Incomplete Ionization Model -- 3.4.2 Simulation of the Kink Effect in MOS Capacitor -- 3.4.2.1 Effect of the Variation of Activation Energy -- 3.4.2.2 Effect of the Variation of Traps Density -- 3.4.2.3 Effect of the Variation of Capture Cross Section -- 3.4.3 Comparison Between Experimental and Simulation Results -- 3.4.3.1 Hysteresis Effect on the C-V Characteristics -- 3.4.3.2 Proof of the Origin of Kink Effect -- 3.5 Conclusion -- References.
Chapter 4 Next Generation Molybdenum Disulfide FET: Its Properties, Evaluation, and Its Applications -- 4.1 Introduction of Two-Dimensional Materials -- 4.2 Evaluation of 2D-Materials -- 4.3 Overview of MoS2 -- 4.3.1 Why MoS2 -- 4.3.2 MoS2 Structured Design -- 4.4 Properties of MoS2 -- 4.4.1 Bulk Characteristics -- 4.4.2 Electrical and Optical Characteristics -- 4.4.2.1 BandGap -- 4.4.2.2 Photoluminescence Spectra -- 4.4.2.3 Injection of Electrons -- 4.4.2.4 Transistor -- 4.4.3 Mechanical Properties -- 4.4.3.1 Valleytronics -- 4.4.3.2 Optical Transitions -- 4.4.3.3 Spin-Orbit Valence Band -- 4.5 Fabrication of MoS2 -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Intercalation -- 4.5.3 Solvent Exfoliation -- 4.5.4 Chemical Vapor Deposition (CVD) -- 4.6 Applications of MoS2 -- 4.6.1 Solid Lubricants -- 4.6.2 Electronic Applications -- 4.6.3 Field-Effect Transistor -- 4.6.4 Switching Transistor -- 4.6.5 Nano-Structures -- 4.6.6 Biosensors -- 4.6.7 FET-Based Biosensors -- 4.7 Comparison of Other 2D Materials with MoS2 -- 4.8 Conclusion -- References -- Chapter 5 Impact of Working Temperature on the ION/IOFF Ratio of a Hetero Step-Shaped Gate TFET With Improved Ambipolar Conduction -- 5.1 Introduction -- 5.2 Device Structure -- 5.3 Results and Discussion -- 5.4 Conclusion -- References -- Chapter 6 Analysis of RF with DC and Linearity Parameter and Study of Noise Characteristics of Gate-All-Around Junctionless FET (GAA-JLFET) and Its Applications -- 6.1 Introduction -- 6.2 Structure of GAA-JLFET -- 6.3 Results and Discussion -- 6.3.1 DC Analysis -- 6.3.2 RF Analysis -- 6.3.3 Linearity Analysis -- 6.3.4 Noise Analysis -- 6.3.4.1 Thermal Noise -- 6.3.4.2 Flicker Noise -- 6.3.4.3 Gate-Induced Thermal Noise -- 6.4 Applications -- 6.5 Conclusion -- References.
Chapter 7 E-Mode-Operated Advanced III-V Heterostructure Quantum Well Devices for Analog/RF and High-Power Switching Applications -- 7.1 Silicon Era and Scaling Limit -- 7.2 III-V GaN-Based Compound Semiconductors -- 7.3 Band-Gap Engineering -- 7.4 Quantum Well -- 7.5 Polarization in GaN Devices and their Specific Properties -- 7.6 Strain and Lattice Mismatch in III-N Semiconductors -- 7.7 High Electron Mobility Transistors (HEMTs) -- 7.8 Two-Dimensional Electron Gas (2DEG) -- 7.9 AlGaN/GaN Heterostructure HEMT -- 7.9.1 Scope of the III-V Heterostructure Quantum Well Device -- 7.9.2 Problem Statement -- 7.9.3 Motivation for the Present III-V Heterostructure Quantum Well Device -- 7.10 Enhancement Mode GaN DH-HEMTs Device With Boron-Doped Gate Cap Layer -- 7.10.1 Device Architecture -- 7.11 High-K Gate Dielectric III-Nitride GaN MIS-HEMT Devices -- 7.11.1 Device Architecture -- 7.11.2 Boost Converter Circuit Application -- 7.12 Conclusion -- References -- Chapter 8 Design of FinFET as Biosensor -- 8.1 Introduction -- 8.2 Existing FET Based Biosensors -- 8.2.1 TGRC-MOSFET as a Biosensor -- 8.2.2 An N-Type Nanogap Embedded Polarity Biased Based DM- EDTFET Biosensor -- 8.2.3 Cavity on Source Charge Plasma TFET-Based Biosensor -- 8.2.4 Dielectric Modulated Double Gate Junctionless MOSFET Biosensor -- 8.2.5 A Double Gate Dielectric Modulated Junctionless Tunnel Field-Effect Transistor as a Biosensor -- 8.3 Performance Parameters of Biosensors -- 8.4 FinFET Designed as Biosensor Using Visual TCAD -- 8.5 Biosensors in Disease Detection -- 8.6 Conclusion -- 8.7 Acknowledgement -- References -- Chapter 9 Biodegradable and Flexible Electronics: Types and Applications -- 9.1 Introduction -- 9.2 Biodegradable and Flexible Electronics -- 9.3 Types of Materials Used for Biodegradable and Flexible Electronics -- 9.3.1 Materials for Biodegradable Electronics.
9.3.2 Materials for Flexible Electronics -- 9.4 Applications of Biodegradable and Flexible Electronic Devices -- 9.4.1 Sensing and Diagnosis -- 9.4.2 Energy Storage -- 9.4.3 Smart Textiles -- 9.4.3.1 Chameleonic Textiles -- 9.4.3.2 Intelligent Textile Sutures -- 9.4.3.3 Textile-Based Flexible and Printable Material -- 9.4.4 Wearable Electronics -- 9.5 Conclusion -- References -- Chapter 10 Novel Parameters Extraction Method of High-Speed PIN Diode for Power Integrated Circuit -- 10.1 Introduction -- 10.2 Review of the Technology and Physics of Power PIN Diodes -- 10.2.1 Technological Aspect -- 10.2.2 Physical Aspect -- 10.3 State of the Art of PIN Diode Parameters Extraction -- 10.4 Proposed Method -- 10.4.1 Principle -- 10.4.2 Doping Profile Parameters Identification -- 10.4.2.1 Experimental Method -- 10.4.2.2 Model Description -- 10.4.2.3 Parameters Extraction Procedure -- 10.4.3 Ambipolar Lifetime Estimation -- 10.4.3.1 Experimental Method -- 10.4.3.2 Numerical Analysis of OCVD Method -- 10.4.3.3 Parameters Extraction Procedure -- 10.5 Validation -- 10.6 Conclusion -- References -- Chapter 11 Edge AI - A Promising Technology -- 11.1 Introduction -- 11.2 Deep Neural Networks -- 11.2.1 Multi-Layer Perceptrons (MLP) -- 11.2.2 Convolutional Neural Networks (CNNs) -- 11.2.3 Recurrent Neural Networks (RNNs) -- 11.3 Model Compression Techniques for Deep Learning -- 11.3.1 Pruning -- 11.3.2 Quantization -- 11.3.3 Low Rank Factorization -- 11.3.4 Knowledge Distillation -- 11.4 Computing Infrastructures -- 11.4.1 GPU Accelerator -- 11.4.2 FPGA Accelerator -- 11.5 Conclusion -- References -- Chapter 12 Tunable Frequency Oscillator -- 12.1 Introduction -- 12.2 Experimental Methods and Materials -- 12.2.1 Varactor Diode -- 12.2.2 Active Inductor -- 12.3 Results and Discussion -- 12.4 Conclusion -- References.
Chapter 13 Introduction to Nanomagnetic Materials for Electronic Devices: Fundamental, Synthesis, Classification and Applications -- 13.1 Introduction - An Explanation of the Process and Approach -- 13.2 Nanomaterials -- 13.2.1 Surface to Volume Ratio -- 13.2.2 Quantum Confinement Effect -- 13.3 Synthesis and Characterization of Nano Materials -- 13.4 Characterization Technique for Structural Analysis -- 13.5 Magnetic Materials -- 13.6 Classification of Magnetic Materials -- 13.7 Magnetic Properties -- 13.8 Ferrites -- 13.8.1 Classification and Types of Ferrites -- 13.8.2 Spinel Ferrite -- 13.8.3 Garnet -- 13.8.4 Ortho Ferrite Structure -- 13.8.5 Magnetoplumbite Structure -- 13.8.6 Hexagonal Ferrites -- 13.8.7 Classification of Hexaferrite -- 13.9 Applications of Magnetic Materials -- 13.10 Conclusion -- References -- About the Editors -- Index -- EULA.
Record Nr. UNINA-9911019569503321
Tripathi Suman Lata  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui