Vai al contenuto principale della pagina

Handbook of Energy Management in Agriculture [[electronic resource] /] / edited by Amitava Rakshit, Asim Biswas, Deepranjan Sarkar, Vijay Singh Meena, Rahul Datta



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rakshit Amitava Visualizza persona
Titolo: Handbook of Energy Management in Agriculture [[electronic resource] /] / edited by Amitava Rakshit, Asim Biswas, Deepranjan Sarkar, Vijay Singh Meena, Rahul Datta Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (767 pages)
Disciplina: 338.16
Soggetto topico: Agriculture
Ecology
Subsistence farming
Subsistence Agriculture
Altri autori: BiswasAsim  
SarkarDeepranjan  
MeenaVijay Singh  
DattaRahul  
Nota di contenuto: Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Contributors -- Part I: Energy Requirement in the Agricultural Food Chain -- Carbon Footprint in Rice Cultivation -- 1 Introduction -- 2 Variation of C Footprint in Different Phenology of Rice Cultivation -- 2.1 Methane Emission and Paddy Growth Stages -- 2.2 The Life Cycle of Rice Production and Carbon Footprint -- 2.3 Assessment of Carbon Footprint in Rice Cultivation -- 3 Rice Straw Burning and C Footprint -- 4 Monitoring of GHG Emission: Methodology and Calculation -- 4.1 Measurement of Methane and Nitrous Oxide -- 5 Calculation of CH4 and N2O Flux -- 5.1 Measurement of Carbon Dioxide (CO2) -- 5.1.1 Alkali Trap Method -- 5.1.2 Soil Respirator -- 5.1.3 Long-Term Measuring Chamber -- 5.1.4 Temporary Portable Measuring Chamber -- 6 Agronomic Intervention to Reduce GHG Emission Under Rice Cultivation -- 6.1 Improved Irrigation Water Management -- 6.1.1 Alternate Wetting and Drying -- 6.1.2 Midseason Drainage -- 6.1.3 Drip Irrigation -- 6.1.4 Laser Land Leveling -- 7 Adaption of Best Nitrogen Management Techniques -- 7.1 Slow-Release Fertilizers -- 7.2 Urease Inhibitors -- 7.3 Nitrification Inhibitors -- 7.4 Urea Deep Placement -- 7.5 More Use of Organic Manures/Green Manures -- 7.6 4R Nutrient Stewardship Based N Application -- 8 Adaption of Improved Rice Production Technologies -- 9 Decision Support Tool -- 10 Soil and Nutrient Management to Reduce GHG Emission Under Rice Cultivation -- 10.1 Mitigating CH4 Emission -- 10.2 Mitigating N2O Emission -- 11 Future Roadmap for Carbon-Smart Rice Cultivation -- 12 Conclusion -- References -- Energy Requirements for Sustainable Sugarcane Cultivation -- 1 Introduction -- 1.1 Method of Energy Calculation -- 2 Operation-Wise Energy Footprints -- 2.1 Seedbed Preparation -- 2.2 Planting/Transplanting.
2.3 Weeding and Intercultural Operations -- 2.4 Irrigation -- 2.5 Fertilizer/Nutrient Management -- 2.6 Plant Protection -- 2.7 Harvesting -- 2.8 Residue Management and its Benefits -- 3 Source-Wise Energy -- 3.1 Overall Energy Assessment Based on the Category of Energy -- 3.2 Energy Indices -- 4 Future Pathway -- 4.1 Strategies for Energy Optimization -- 5 Conclusion -- References -- Carbon Footprint of Different Energy-Intensive Systems -- 1 Introduction -- 2 Agriculture as an Energy-Intensive System -- 3 Definition of Carbon Footprint -- 4 Why Carbon Footprinting? -- 5 Agriculture and Climate Change -- 6 Factors Contributing to Carbon Footprint of Different Systems in Agriculture -- 7 Use of Inorganic N Fertilizer -- 8 Fossil Fuels -- 9 Pesticide Use -- 10 Fuels -- 11 Waste and Water -- 12 Carbon Footprint Calculation -- 13 Carbon Footprint Calculations for Energy -- 14 Selection of Conversion Factors -- 15 Steps to Reduce Carbon Footprint -- 15.1 New Technologies to Reduce Enteric Fermentation -- 16 Cutting Emissions from Pasture Manure -- 17 Increase Nitrogen Use Efficiency to Reduce Fertilizer Emissions -- 18 Rice Management and Varieties That Reduce Emissions -- 19 Increasing Agricultural Energy Efficiency and Reducing Fossil Fuels -- 20 Concentrate on Practical Options for Carbon Sequestration in Soils -- 21 Reduction in Fertilizer Use and N2-Fixing Pulses to Lower Carbon Footprint -- 22 Conclusion -- References -- Carbon Footprint and Sustainability of Different Agricultural Production Systems in Climate Change Scenario -- 1 Introduction -- 2 Emission from Mechanical Operations -- 3 Emission from Irrigation -- 3.1 Emission from Fertilizer Use -- 4 Emission from Livestock -- 4.1 Methane-Reducing Feed Additives and Supplements -- 5 Carbon Efficiency and Carbon Intensity.
6 Efficient Farming Practices That Reduce Emissions from Crop Production -- 7 Scenario of Carbon Footprints in Major Food Crops -- 8 Conclusion -- References -- Energy Budgeting of Crops Under Rainfed Conditions -- 1 Introduction -- 2 Rainfed Ecology: A Fragile Ecology -- 2.1 Global Scenario -- 2.2 Rainfed Ecology in the Indian Context -- 2.3 Challenges Faced in Rainfed Ecology -- 2.4 Emerging Paradigm to Mitigate the Fragile Ecology -- 3 Energy Issue under Rainfed Agroecology -- 3.1 Intensification Processes -- 3.2 Soil Water/Moisture Stress -- 3.3 Genetic Resource Constraints -- 3.4 Soil/ Water Erosion -- 3.5 Nonjudicious/Rampant Use of Inorganic Fertilizers -- 3.6 Low Soil Organic Carbon Content -- 3.7 Low External Inputs -- 4 Energy Use, Dynamics, and Efficiency Under Different Crops -- 4.1 Farm Power Use Patterns -- 4.2 Energy Use Pattern -- 4.2.1 Crop Establishment Methods -- 4.2.2 Organic Farming -- 4.2.3 Conservation Agriculture -- 4.2.4 Energy Dynamics for Different Farm Operations -- Seedbed Preparation and Sowing -- Fertilizer Application -- Pesticide Application -- Irrigation -- Road Transport -- 4.2.5 Energy Dynamics Under Different Crops -- 4.2.6 Energy Analysis Parameters -- 5 Designing a Sustainable Solution for Energy Management -- 5.1 Farming Practices that Improve Energy Efficiency -- 5.1.1 Improved Fertilizer and Pesticide Use -- 5.1.2 Zero Tillage and Conservation Agriculture -- 5.1.3 Cultural or Ecological Practices -- 5.1.4 Tractors and Machinery Maintenance -- 5.2 Adoption of State-of-the-Art Technologies in Agriculture -- 5.2.1 Precision Agriculture -- 5.2.2 Use of Robotics -- 5.3 Production and Use of Renewable Energy for Farming Operations -- 6 Conclusions -- References -- Energy Use and Economic Evaluation Under Conservation and Organic Farming -- 1 Introduction.
1.1 Why Should Energy and Economic Budgeting Be Done for Farming System? -- 2 Farm-Level Economics of Conventional and Organic Farming -- 2.1 Direct Comparison Between Organic and Conventional Farms Based on Farm Input and Output Data -- 2.2 Modelling Comparisons of Organic and Conventional Farms -- 3 Comparison of Energy Budgets of Different Conventional and Organic Farming Production Systems -- 4 Farm-Level Energy Budgets of Conventional Farming and Organic Farming -- 5 Energy Budgeting of Conventional and Organic Farming -- 6 Economic Budgeting of Conventional and Organic Farming -- 7 Conclusions -- References -- Part II: Different Aspects/Concepts of Energy Efficiency and Management -- Agricultural Residue Management Using Forced Draft Gasifier Cookstove -- 1 Introduction -- 2 Methodology -- 2.1 Designing Parameters: Stove -- 2.1.1 Amount of Air and Energy Needed for Gasification (AFR) -- 2.1.2 Cooking Power and Fuel Burning Rate -- 2.1.3 Hearth Load and Fuel Storage Capacity -- 2.2 Description of the Gasifier Stove -- 2.3 Principle of Operation -- 2.4 Observations and Findings: TLUD Cookstove -- 3 Results and Discussion -- 3.1 Air Supply and Gas Concentrations -- 4 Conclusions -- References -- Biomass Energy from Agriculture -- 1 Introduction -- 2 Biomass Conversion Techniques -- 2.1 Direct Combustion -- 2.2 Thermochemical Conversion -- 2.2.1 Pyrolysis -- 2.2.2 Gasification -- 2.2.3 Carbonization -- 2.3 Chemical Conversion -- 2.4 Biochemical Conversion -- 2.4.1 Anaerobic Digestion -- 2.4.2 Methane Production in Landfills -- 2.4.3 Ethanol Fermentation -- 2.5 Densification Techniques -- 3 Indian Biomass Energy Conversion Policy -- 4 Conclusion -- References -- Biomass -- 1 Introduction -- 2 Biomass and Its Characteristics -- 3 Forms of Biofuels -- 3.1 Solid Biofuels -- 3.1.1 Briquetting -- 3.1.2 Charcoal -- 3.1.3 Biochar -- 3.2 Liquid Biofuels.
3.3 Gaseous Biofuels -- 4 Agricultural Biomass As Source of New Energy -- 4.1 Ethanol -- 4.1.1 History of Ethanol Production -- 4.1.2 Process of Ethanol Production -- 4.1.3 Benefits and Disadvantages in Ethanol Production -- 4.1.4 The Drawbacks of Ethanol Production and Use -- 4.1.5 Current Status and Potential of Ethanol Production in the World -- 4.1.6 Future Perspective in Its Production -- 4.1.7 Indian Case Study and Policy Measures -- 4.2 Biodiesel -- 4.2.1 History -- 4.2.2 Production Process -- 4.2.3 Extraction from Jatropha -- 4.2.4 Other Production Processes -- 4.2.5 Biodiesel Properties -- 4.2.6 Advantages of Biodiesel Use -- 4.2.7 Disadvantages of Biodiesel Use -- 5 Process of Biomass Conversion to Energy -- 5.1 Combustion -- 5.2 Thermochemical Conversion -- 5.2.1 Pyrolysis -- 5.2.2 Gasification -- 5.3 Chemical Conversion -- 6 Conclusion -- References -- Biomass Technologies for Crop Residue Management -- 1 Crop Residue Management Using Densification Techniques -- 2 Biomass Briquetting: Densification Technology for Agricultural Waste -- 3 Biomass Densification Technologies -- 4 Briquetting Process -- 4.1 Raw Materials Collection -- 4.2 Size Reduction of Raw Materials -- 4.2.1 Drying -- 4.2.2 Size Reduction -- 4.3 Raw Material Mixing -- 4.4 Compaction -- 4.5 Heat Reduction and Storage of Briquettes -- 5 Availability of Raw Materials -- 6 Factors Affecting Briquetting Process -- 7 Methods of Briquetting -- 8 Briquetting Technologies -- 9 Advantages of Briquettes -- 10 Application of Briquettes -- 11 Advantages -- 12 Basic Needs to Start a Briquette Production Unit -- 13 Pelletizing -- 14 Conclusion -- References -- Internet of Things (IoT) Framework to Support Sustainable Food Production -- 1 Introduction -- 2 Innovation in the Agricultural Sector -- 2.1 Green Revolution -- 2.2 Process Mechanization -- 2.3 Precision Agriculture.
2.4 Agriculture 4.0.
Sommario/riassunto: This handbook provides a holistic overview of different aspects of energy management in agriculture with an orientation to address the sustainable development goals. It covers possible applications not only from a technical point of view, but also from economic, financial, social, regulatory, and political viewpoints. Agriculture is one of the most imperative sectors that contribute to the economy across different agro-ecologies of the universe with energy inputs in each stage of production, from making and applying chemicals to fueling tractors that lay seeds and harvest crops to electricity for animal housing facilities. The majority of agricultural research has focused on the use of input, production, and productivity, whereas rational energy budgeting and use remain an overlooked and likely underestimated segment, ignored so far while formulating agro-ecosystem framework. Energy management study is a new frontier of agriculture and is challenging duе to complex enterprises, spatial-temporal variability, exposure to pollution, and the predominant effect of the anthropogenic factor on ecology and environment. But it is worth taking the challenge considering the important prerequisite role of energy for sustainable development which has been evidenced from increasing research in recent times. Of recent origin, there are critical, in-depth studies around the globe assessing the capture and flow of energy in the ecosystem, which will help to develop a conceptual framework to incorporate this vital resource in the agriculture management template. This book is a state-of-the-art resource for a broad group of readers including a diversity of stakeholders and professionals in universities, public energy institutions, farmers and farming industry, public health and other relevant institutions, and the broader public as well.
Titolo autorizzato: Handbook of Energy Management in Agriculture  Visualizza cluster
ISBN: 981-19-7736-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910725098803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui