top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Additive Manufacturing with Novel Materials : Process, Properties and Applications
Additive Manufacturing with Novel Materials : Process, Properties and Applications
Autore Rajasekar R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (538 pages)
Altri autori (Persone) MoganapriyaC
KumarP. Sathish
ISBN 1-394-19808-6
1-394-19807-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910835066903321
Rajasekar R
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Additive Manufacturing with Novel Materials : Process, Properties and Applications
Additive Manufacturing with Novel Materials : Process, Properties and Applications
Autore Rajasekar R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (538 pages)
Disciplina 621.988
Altri autori (Persone) MoganapriyaC
KumarP. Sathish
Soggetto topico Additive manufacturing
Materials science
ISBN 9781394198085
1394198086
9781394198078
1394198078
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Brief Glimpses of Additive Manufacturing Techniques -- 1.1 Introduction -- 1.2 Polymer-Based AM -- 1.3 Surgical Planning -- 1.4 Titanium Alloy -- 1.5 Thickness Control Using Machine Learning -- 1.6 Carbon Fiber-Based AM -- 1.7 Ceramics-Based AM -- 1.8 Wire Polymer-Based AM -- 1.9 Nanomaterial-Based AM -- 1.10 Direct Ink Writing (DIW) -- 1.11 Hull of Soy -- 1.12 Laser Powder Bed Fusion -- 1.13 Future Challenges -- 1.14 Future Scope of AM -- 1.15 Conclusion -- References -- Chapter 2 Recent Developments in Additive Manufacturing Equipment’s and Its Processes -- 2.1 Introduction -- 2.2 Equipment and Procedures for Polymer Additive Manufacturing -- 2.2.1 Stereolithography -- 2.2.2 Ink Jetting -- 2.3 Equipment and Procedures for Metal Additive Manufacturing -- 2.3.1 Powder Bed Fusion -- 2.3.2 Directed Energy Deposition
Record Nr. UNINA-9911019267103321
Rajasekar R  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal Additive Manufacturing : Principles, Techniques and Applications
Metal Additive Manufacturing : Principles, Techniques and Applications
Autore Rajasekar R
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (554 pages)
Disciplina 621.988
Altri autori (Persone) MostafaeiAmir
PriyaC. Mogana
KumarP. Sathish
Soggetto topico Additive manufacturing
Materials science
ISBN 1-394-28765-8
1-394-28763-1
1-394-28764-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Technologies for Additive Manufacturing of Metals and Their Classification -- 1.1 Introduction -- 1.2 Metal Additive Manufacturing Process (MAMP) -- 1.3 Classification of MAMP Based on Technologies -- 1.4 Liquid-Based MAMP: Liquid Metal 3D Printing -- 1.5 Solid-Based MAMP: Ultrasonic Additive Manufacturing -- 1.6 Powder-Based MAMP -- 1.6.1 Binder Jetting -- 1.6.2 Powder Direct Energy Deposition (DED) -- 1.6.2.1 Laser Cladding Technology -- 1.6.2.2 Underwater LC Technology -- 1.6.3 Powder Bed Fusion (PBF) -- 1.6.3.1 Electron Beam PBF: Electron Beam Melting (EBM) -- 1.6.3.2 Laser PBF: Selective Laser Sintering -- 1.7 Wire-Based MAMP: Wire DED -- 1.7.1 Wire Arc Additive Manufacturing -- 1.7.1.1 GMAW -- 1.7.1.2 GTAW -- 1.7.1.3 CMT -- 1.7.1.4 Plasma Welding -- 1.8 Applications -- 1.9 Conclusion -- References -- Chapter 2 Challenges and Complications in Metal Additive Manufacturing During Post Processing -- 2.1 Introduction -- 2.1.1 Types of Additive Manufacturing -- 2.1.1.1 Powder Based Additive Manufacturing -- 2.1.1.2 WAAM by Gas Tungsten Arc (GTAW) Welding -- 2.1.1.3 AM by Gas Metal Arc Welding (GMAW) -- 2.1.1.4 Defects in Components Made by AM -- 2.2 Various Post Processing Methods -- 2.2.1 Cold Rolling -- 2.2.2 Heat Treatment -- 2.2.3 Friction Stir Processing (FSP) -- 2.2.4 Laser Peening -- 2.2.5 Short Peening and Ultrasonic Impact Testing (UIT) -- 2.3 Future Scope and Aspects -- 2.4 Conclusion -- References -- Chapter 3 Mechanics and Modeling of Metal Additive Manufacturing Using Directed Energy Deposition Method -- 3.1 Introduction -- 3.1.1 Mechanics of DED -- 3.1.1.1 Heat Transfer Mechanisms -- 3.1.1.2 Thermal Stresses and Distortion -- 3.1.1.3 Microstructure Evolution -- 3.1.1.4 Residual Stresses and Mechanical Properties.
3.1.2 Modeling Approaches in DED -- 3.1.2.1 Analytical Model -- 3.1.3 Heat Transfer Analysis -- 3.1.4 Thermal Stress Analysis -- 3.1.5 Solidification and Cooling Rates -- 3.1.6 Melt Pool Geometry -- 3.1.7 Energy Efficiency -- 3.2 Computational Modeling -- 3.2.1 Computational Fluid Dynamics -- 3.2.2 Finite Element Modeling -- 3.2.2.1 Thermal Analysis -- 3.2.2.2 Mechanical Analysis -- 3.2.2.3 Metallurgical Analysis -- 3.2.3 Multi-Physics Modeling -- 3.3 Nucleation Modeling -- 3.3.1 Phase Field -- 3.3.2 Cellular Automata (CA) -- 3.3.3 Monte Carlo (MC) Model -- 3.4 Conclusion -- References -- Chapter 4 Rapid Additive Manufacturing of Metals Using the Cold Spray Technology: Progress and Challenges -- 4.1 Introduction -- 4.2 Progress in Cold Spraying Towards an Implementation as a Fast AM Route for Metals -- 4.3 Processing Science of Cold Spraying from Coating to Additive Manufacturing -- 4.4 Cold Spraying Modern System for an Additive Manufacturing Application -- 4.5 Robotic Technology and Computerized Program Execution in Cold Spraying -- 4.6 Robotic Programming and Deposition Strategy for CSAM -- 4.7 Current Achievements in CSAM of Metallic Parts -- 4.8 Porosity Issue Due to the Additive Growth and Methods for Pore Reduction -- 4.9 Issue of Clogging in CSAM and Concept of Aerospike Nozzle as Potential Solution -- 4.10 Future Research Directions -- 4.11 Conclusion -- References -- Chapter 5 Principles of Material Extrusion in Metal Additive Manufacturing -- 5.1 Introduction -- 5.2 Additive Manufacturing Technology -- 5.3 Basic Additive Manufacturing Methods -- 5.3.1 Fused Deposition Modeling (FDM) -- 5.3.2 Stereolithography (SLA) -- 5.3.3 Selective Laser Sintering (SLS) -- 5.3.4 Electron Beam Melting (EBM) -- 5.3.5 Digital Light Processing (DLP) -- 5.3.6 Metal Material Extrusion with Additive Manufacturing -- 5.4 Extrusion Principle.
5.4.1 Extrusion Process of Metal Materials -- 5.4.2 Industrial Applications of Extrusion -- 5.4.3 Advantages and Challenges of Extrusion -- 5.5 Metal Extrusion with Additive Manufacturing -- 5.5.1 Application of Additive Manufacturing Technology -- 5.5.2 Design and Simulation Processes -- 5.5.3 Material Selection and Properties -- 5.6 Industrial Applications and Examples -- 5.6.1 Automotive Industry Applications -- 5.6.2 Aerospace Industry Applications -- 5.6.3 Medical Industry Applications -- 5.6.4 Energy Sector Applications -- 5.7 Future Potential and Innovative Approaches -- 5.7.1 Expansion of Metal Material Range -- 5.7.2 Development of Multi-Functional Parts -- 5.7.3 Production of Large-Scale Parts -- 5.7.4 Development of High-Performance Materials -- 5.7.5 Sustainability and Use of Recycled Materials -- 5.7.6 Artificial Intelligence and Automation Integration -- 5.8 Conclusion -- References -- Chapter 6 Material Design: A 'Material' Way to Improve Additive Manufacturing -- 6.1 Introduction -- 6.1.1 Metal Additive Manufacturing (MAM) -- 6.2 Conventional Alloys for MAM -- 6.3 Limitations of Conventional Alloys for MAM -- 6.4 Material Design for Metal Additive Manufacturing -- 6.4.1 Design Strategies -- 6.4.2 Crack Annihilation -- 6.4.3 Grain Size Strengthening -- 6.4.4 Multiple Alloy Powder Mixing -- 6.4.5 Oxide-Dispersion-Strengthening (ODS) -- 6.4.6 New Alloy -- 6.5 Alloys Designed for AM -- 6.5.1 Al Alloys -- 6.5.2 Nickel-Based Superalloy -- 6.5.3 Multi-Principle Element Alloys (MPEAs) -- 6.5.4 Other Alloys -- 6.6 Perspective and Future Directions -- 6.7 Summary -- References -- Chapter 7 Metal Powder Feedstock Production for Additive Manufacturing -- 7.1 Introduction -- 7.2 Different Stages in Metal Powder Production -- 7.3 Feedstock Selection -- 7.3.1 Quality Assurance Methodologies -- 7.3.1.1 Particle Size Analysis.
7.3.1.2 Chemical Composition Testing -- 7.3.1.3 Morphological Characterization Techniques -- 7.3.2 Certification Standards in Metal Powder Production -- 7.3.2.1 ISO Standards -- 7.3.2.2 ASTM International Standards -- 7.3.2.3 Industry-Specific Standards -- 7.4 Processes -- 7.4.1 Gas Atomization -- 7.4.1.1 Free-Fall Atomization -- 7.4.1.2 Close-Coupled Gas Atomization -- 7.4.1.3 High-Pressure Gas Atomization Process -- 7.4.1.4 EIGA and PIGA Process -- 7.4.2 Water Atomization -- 7.4.3 Plasma Atomization -- 7.4.4 Centrifugal Atomization -- 7.4.5 Melt Spinning -- 7.4.6 Rotating Electrode Process -- 7.4.6.1 Plasma Rotating Electrode Process -- 7.4.7 Mechanical Processes -- 7.4.7.1 Comminution -- 7.4.7.2 Mechanical Alloying -- 7.4.8 Chemical Processes -- 7.4.8.1 Oxide Reduction -- 7.4.8.2 Chloride Reduction -- 7.4.8.3 Hydrometallurgical Techniques -- 7.4.8.4 Carbonyl Reactions -- 7.4.9 Other Processes -- 7.4.9.1 Laser Ablation -- 7.4.9.2 Ultrasonic Spray Pyrolysis -- 7.4.9.3 Microwave Plasma Synthesis -- 7.4.9.4 Combustion Synthesis -- 7.4.9.5 Spark Erosion -- 7.4.10 Sustainable Initiatives -- 7.4.10.1 Eco-Friendly Atomization Methods -- 7.4.10.2 Recycling Strategies -- 7.4.10.3 Life Cycle Assessment -- 7.5 Powder Processing -- 7.6 Discussion -- 7.6.1 Successful Applications of Metal Powders in Industries -- 7.6.1.1 Aerospace Industry -- 7.6.1.2 Healthcare Sector -- 7.6.1.3 Automotive Industry -- 7.6.1.4 Electronic Industry -- 7.6.1.5 Energy Sector -- 7.6.1.6 Tool and Die Manufacturing -- 7.6.1.7 Chemical Industry -- 7.6.1.8 Sports and Recreation Equipment -- 7.6.1.9 Nuclear Industry -- 7.6.1.10 Additive Manufacturing for Jewelry -- 7.6.1.11 Art and Sculpture Production -- 7.6.1.12 Precision Optics Coating -- 7.6.1.13 Renewable Energy Storage -- 7.7 Conclusion -- Acknowledgments -- References.
Chapter 8 Additive Manufacturing of Intermetallic- Based Alloys: A Review -- 8.1 Introduction -- 8.2 Basic Properties of Intermetallic Alloy -- 8.2.1 NiAl-Based Alloys -- 8.2.2 Ni3Al-Based Alloys -- 8.2.3 TiAl-Based Alloys -- 8.2.3.1 .-TiAl Phase -- 8.2.3.2 a2-Ti3Al Phase -- 8.2.3.3 B2 Phase -- 8.2.3.4 .-Titanium Aluminide Microstructure -- 8.3 Additive Manufacturing Techniques -- 8.4 NiAl-Based Alloys -- 8.5 Metallurgical Defects -- 8.6 Microstructure -- 8.7 Mechanical Properties -- 8.8 Ni3Al-Based Alloys -- 8.9 Metallurgical Defects -- 8.10 Microstructure -- 8.11 Mechanical Properties -- 8.12 TiAl-Based Alloy -- 8.12.1 Metallurgical Defects -- 8.13 Microstructure -- 8.14 Mechanical Properties -- 8.15 Conclusion and Perspectives -- 8.15.1 Conclusion -- 8.15.2 Perspectives -- Acknowledgments -- References -- Chapter 9 Mechanical Behavior of 3D Printed Parts -- 9.1 Introduction -- 9.1.1 Basic Steps of AM Process -- 9.2 Metal AM and its Classification -- 9.3 Metal AM Processes and the Mechanical Properties of Printed Parts -- 9.3.1 Powder Bed Fusion Process -- 9.3.1.1 Laser Powder Bed Fusion (LPBF) -- 9.3.1.2 Electron Beam Powder Bed Fusion (EB-PBF) -- 9.3.2 Binder Jetting Process (BJ) -- 9.3.2.1 Mechanical Properties of 3D Printed Metal Parts by BJ Process -- 9.3.3 Directed Energy Deposition (DED) -- 9.3.3.1 Laser-Based Direct Energy Deposition (LDED) -- 9.3.3.2 Electron Beam Directed Energy Deposition (EB-DED) -- 9.3.3.3 Wire Arc Directed Energy Deposition (Wire Arc DED) -- 9.3.4 Sheet Lamination or Laminated Object Manufacturing (LOM) -- 9.3.4.1 Mechanical Properties of 3D Printed Metal Parts by Sheet Lamination -- 9.4 Effect of Post-Processing on the Mechanical Properties of 3D Printed Metal Parts -- 9.5 Challenges and Opportunities for Metal AM -- 9.6 Conclusion -- References.
Chapter 10 Processing of Hydrogels with Metallic Additives in Additive Manufacturing.
Record Nr. UNINA-9911020432903321
Rajasekar R  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui