Blockchain, Artificial Intelligence, and the Internet of Things : Possibilities and Opportunities
| Blockchain, Artificial Intelligence, and the Internet of Things : Possibilities and Opportunities |
| Autore | Raj Pethuru |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing AG, , 2021 |
| Descrizione fisica | 1 online resource (218 pages) |
| Altri autori (Persone) |
DubeyAshutosh Kumar
KumarAbhishek RathorePramod Singh |
| Collana | EAI/Springer Innovations in Communication and Computing Ser. |
| Soggetto genere / forma | Electronic books. |
| ISBN |
9783030776374
9783030776367 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910510565503321 |
Raj Pethuru
|
||
| Cham : , : Springer International Publishing AG, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Building Embodied AI Systems: The Agents, the Architecture Principles, Challenges, and Application Domains / / edited by Pethuru Raj, Alvaro Rocha, Simar Preet Singh, Pushan Kumar Dutta, B. Sundaravadivazhagan
| Building Embodied AI Systems: The Agents, the Architecture Principles, Challenges, and Application Domains / / edited by Pethuru Raj, Alvaro Rocha, Simar Preet Singh, Pushan Kumar Dutta, B. Sundaravadivazhagan |
| Autore | Raj Pethuru |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (526 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
RochaAlvaro
SinghSimar Preet DuttaPushan Kumar SundaravadivazhaganB |
| Collana | Information Systems Engineering and Management |
| Soggetto topico |
Automatic control
Robotics Automation Computational intelligence Artificial intelligence Control, Robotics, Automation Computational Intelligence Artificial Intelligence |
| ISBN |
9783031682568
9783031682551 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Building Embodied AI Systems: The Agents, the Architectural Principles, Challenges and Application Domains -- Chapter 2. Demystifying Embodied AI -- Chapter 3. Navigating the Nexus: Unravelling Challenges, Ethics, and Applications of Embodied AI in Drone Technology through the Lens of Computer Vision -- Chapter 4. Artificial Intelligence Algorithm Models For Agents Of Embodiment For Drone Applications -- Chapter 5. Artificial intelligence algorithms and models for embodied agents: enhancing autonomy in drones and robots -- Chapter 6. Enhanced Security and Privacy from Industry 4.0 and 5.0 Vision -- Chapter 7. Exploring applications: intelligent drones and robots in industrial settings -- Chapter 8. The Industrial Revolution: Harnessing Embodied AI Systems -- Chapter 9. Synergistic Fusion: Vision-Language Models in Advancing Autonomous Driving and Intelligent Transportation Systems -- Chapter 10. Health Care Industry Use Cases of Embodied AI -- Chapter 11. Computing, clouds, analytics and artificial intelligence at the edge.-...Etc. |
| Record Nr. | UNINA-9910951802703321 |
Raj Pethuru
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cloud enterprise architecture / / Pethuru Raj
| Cloud enterprise architecture / / Pethuru Raj |
| Autore | Raj Pethuru |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Boca Raton, Fla. : , : CRC Press, , 2013 |
| Descrizione fisica | 1 online resource (511 p.) |
| Disciplina |
004.67/82
004.6782 |
| Soggetto topico |
Cloud computing
Software architecture Computer software - Development |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-4665-8907-8
0-429-06717-8 1-4665-0233-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Contents; Foreword; Preface; Acknowledgments; Author; CEA Book Audience and Key Takeaways; Chapter 1 - Cloud-Enabled Smart Enterprises!; Chapter 2 - Cloud-Inspired Enterprise Transformations!; Chapter 3 - Cloud-Instigated IT Transformations!; Chapter 4 - Cloud EA: Frameworks and Platforms; Chapter 5 - Cloud Application Architecture; Chapter 6 - Cloud Data Architecture; Chapter 7 - Cloud Technology Architecture; Chapter 8 - Cloud Integration Architecture; Chapter 9 - Cloud Management Architecture; Chapter 10 - Cloud Security Architecture (CSA)
Chapter 11 - Cloud Governance ArchitectureChapter 12 - Cloud Onboarding Best Practices; Back Cover |
| Record Nr. | UNINA-9910462548503321 |
Raj Pethuru
|
||
| Boca Raton, Fla. : , : CRC Press, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cloud enterprise architecture / / Pethuru Raj
| Cloud enterprise architecture / / Pethuru Raj |
| Autore | Raj Pethuru |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Boca Raton, Fla. : , : CRC Press, , 2013 |
| Descrizione fisica | 1 online resource (511 p.) |
| Disciplina |
004.67/82
004.6782 |
| Soggetto topico |
Cloud computing
Software architecture Computer software - Development |
| ISBN |
1-138-37465-2
1-4665-8907-8 0-429-06717-8 1-4665-0233-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Contents; Foreword; Preface; Acknowledgments; Author; CEA Book Audience and Key Takeaways; Chapter 1 - Cloud-Enabled Smart Enterprises!; Chapter 2 - Cloud-Inspired Enterprise Transformations!; Chapter 3 - Cloud-Instigated IT Transformations!; Chapter 4 - Cloud EA: Frameworks and Platforms; Chapter 5 - Cloud Application Architecture; Chapter 6 - Cloud Data Architecture; Chapter 7 - Cloud Technology Architecture; Chapter 8 - Cloud Integration Architecture; Chapter 9 - Cloud Management Architecture; Chapter 10 - Cloud Security Architecture (CSA)
Chapter 11 - Cloud Governance ArchitectureChapter 12 - Cloud Onboarding Best Practices; Back Cover |
| Record Nr. | UNINA-9910785715603321 |
Raj Pethuru
|
||
| Boca Raton, Fla. : , : CRC Press, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cloud enterprise architecture / / Pethuru Raj
| Cloud enterprise architecture / / Pethuru Raj |
| Autore | Raj Pethuru |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Boca Raton, Fla. : , : CRC Press, , 2013 |
| Descrizione fisica | 1 online resource (511 p.) |
| Disciplina |
004.67/82
004.6782 |
| Soggetto topico |
Cloud computing
Software architecture Computer software - Development |
| ISBN |
1-138-37465-2
1-4665-8907-8 0-429-06717-8 1-4665-0233-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Contents; Foreword; Preface; Acknowledgments; Author; CEA Book Audience and Key Takeaways; Chapter 1 - Cloud-Enabled Smart Enterprises!; Chapter 2 - Cloud-Inspired Enterprise Transformations!; Chapter 3 - Cloud-Instigated IT Transformations!; Chapter 4 - Cloud EA: Frameworks and Platforms; Chapter 5 - Cloud Application Architecture; Chapter 6 - Cloud Data Architecture; Chapter 7 - Cloud Technology Architecture; Chapter 8 - Cloud Integration Architecture; Chapter 9 - Cloud Management Architecture; Chapter 10 - Cloud Security Architecture (CSA)
Chapter 11 - Cloud Governance ArchitectureChapter 12 - Cloud Onboarding Best Practices; Back Cover |
| Record Nr. | UNINA-9910800034703321 |
Raj Pethuru
|
||
| Boca Raton, Fla. : , : CRC Press, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cloud-native computing : how to design, develop, and secure microservices and event-driven applications / / Pethuru Raj, Skylab Vanga and Akshita Chaudhary
| Cloud-native computing : how to design, develop, and secure microservices and event-driven applications / / Pethuru Raj, Skylab Vanga and Akshita Chaudhary |
| Autore | Raj Pethuru |
| Pubbl/distr/stampa | Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] |
| Descrizione fisica | 1 online resource (354 pages) |
| Disciplina | 005.3 |
| Soggetto topico |
Application software - Development
Cloud computing Application software |
| ISBN |
1-119-81479-0
1-119-81477-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 The Dawning of the Digital Era -- Demystifying the Digitization Paradigm -- Delineating the Digitalization Technologies -- Trendsetting Technologies for the Digital Era -- Why Digitization Is Indispensable -- The Connectivity and Integration Options -- The Promising Digital Intelligence Methods -- The Technological Approaches Toward Smarter Environments -- Briefing the Brewing Idea of Digital Twin -- Envisioning the Digital Universe -- Cloud-Native Applications (CNAs) -- Conclusion -- References -- Chapter 2 The Cloud-Native Computing Paradigm for the Digital Era -- Introduction -- The Onset of the Digital Era -- The Maturity of Software-defined Cloud Environments -- The Hybrid Model of Microservices Architecture (MSA) and Event-driven Architecture (EDA) -- The Aspect of Containerization -- The Emergence of Container Lifecycle Management Platforms -- Tending Toward Cloud-Native Computing -- Demystifying the Cloud-Native Architecture Style -- Distinguishing Cloud-Native Infrastructure -- Cloud-Native Security -- Cloud-Native Computing Advantages -- Conclusion -- References -- Chapter 3 Kubernetes Architecture, Best Practices, and Patterns -- Introduction -- The Emergence of Containerized Applications for IT Portability -- Microservices Architecture (MSA) Applications for IT Agility and Adaptivity -- The Onset of Containerized Cloud Environments -- The Need for Container Orchestration Platform Solutions -- The Significance of Kubernetes for Cloud-Native Systems -- Kubernetes for Edge Cloud Environments -- Kubernetes for Multi-Cloud Implementations -- Delineating the Kubernetes' Master-Slave Architecture -- The Special Features of the Kubernetes Platform -- Best Practices for Efficient and Effective Kubernetes -- Kubernetes Patterns.
Conclusion -- References -- Chapter 4 The Observability, Chaos Engineering, and Remediation for Cloud-Native Reliability -- Introduction -- The Emergence of Cloud-Native Observability -- The Key Motivations for Cloud-Native Applications -- Cloud-Native Applications: The Realization Technologies -- DevOps for Cloud-Native Applications (CNAs) -- Container Orchestration Platforms -- The Cloud-Native Application Challenges [1, 2] -- Cloud-Native Resiliency -- Cloud-Native Chaos Engineering -- Cloud-Native Observability [3-5] -- Cloud-Native Observability: The Benefits -- Cloud-Native Observability for Chaos Engineering -- AIOps-Enabled Cloud-Native Observability -- Building System Resilience Through AIOps -- Cloud-Native Remediation -- Conclusion -- References -- Chapter 5 Creating Kubernetes Clusters on Private Cloud (VMware vSphere) -- Introduction -- Purpose -- Scope -- Deployment Pre-requirements -- Prerequisites -- vCenter Requirements -- Cluster Resources -- Required IP Addresses -- DNS Records -- Create Local Linux Installer VM on VMware vSphere -- Generating an SSH Private Key and Adding it to the Agent -- Create DHCP Server -- Download OpenShift Installation for vSphere -- Procedure -- Adding vCenter Root CA Certificates to your Installer VM -- Deploying the OCP Cluster on VMware vSphere -- Installing the CLI on Linux -- Uninstall OpenShift Cluster -- Considerations When you Delete OpenShift for VMware (https://cloud.ibm.com/docs/vmwaresolutions) -- Conclusion -- Further Reading -- Chapter 6 Creating Kubernetes Clusters on Public Cloud (Microsoft Azure) -- Introduction -- Prerequisites -- Configuring a Public DNS Zone in Azure -- DNS Creation -- Prerequisites -- Create a DNS Zone -- Required Azure Roles -- Creating a Service Principal -- Azure CLI Setup -- Manually Create IAM -- Start Installation of OCP -- Uninstall Cluster -- Conclusion. Further Reading -- Chapter 7 Design, Development, and Deployment of Event-Driven Microservices Practically -- Introduction -- Technology Stack to Build Microservices -- Express Framework -- Steps to Set Up Your Project -- Blog Post Microservice -- Comments Microservice -- Implementation of Event-Driven Model -- Event Bus -- Deployment Strategies -- Conclusion -- Chapter 8 Serverless Computing for the Cloud-Native Era -- Introduction -- The Key Motivations for Serverless Computing [1, 2] -- Briefing Serverless Computing -- The Serverless Implications -- The Evolution of Serverless Computing [3, 4] -- Serverless Application Patterns -- Containers as the Function Runtime -- Serverless Computing Components [5, 6] -- Advantages of Using a Serverless Database -- Disadvantages of Using Serverless Databases -- Top Benefits of Serverless Computing -- Overcoming Serverless Obstacles -- The Future of Serverless Computing -- Conclusion -- Appendix -- Knative for Serverless Computing -- References -- Chapter 9 Instaling Knative on a Kubernetes Cluster -- Introduction -- Knative Serving Resources -- Further Reading -- Chapter 10 Delineating Cloud-Native Edge Computing -- Introduction -- Briefing Cloud-Native Computing -- Technical and Business Cases for Cloud-Native Computing [3, 4] -- The Emergence of Edge Computing -- Cloud-Native Technologies for Edge Computing -- Benefits of Bringing the Cloud-Native Principles to the Edge -- The Deployment Scenarios at the Edge -- Kubernetes Deployment Options for Edge Computing -- Cloud-Native at the Edge: The Use Cases -- Navigating Heterogeneous Environments at the Edge -- Monitoring Kubernetes-Enabled Edge Environments -- Edge Analytics for Real-Time Video Surveillance -- Describing Edge AI -- Conclusion -- References -- Chapter 11 Setting up a Kubernetes Cluster using Azure Kubernetes Service -- Introduction. Benefits of Azure Kubernetes Service -- Purpose -- Scope -- An Introduction to Azure Kubernetes Service -- Features of Azure Kubernetes Services -- Azure Kubernetes Service Use Cases -- Common Uses for Azure Kubernetes Service -- High-Level Architecture -- Architecture Design -- Deployment Pre-Requisites -- Conclusion -- Further Reading -- Chapter 12 Reliable Cloud-Native Applications through Service Mesh -- Introduction -- Delineating the Containerization Paradigm -- Demystifying Microservices Architecture -- Decoding the Growing Role of Kubernetes for the Container Era -- Describing the Service Mesh Concept [1-3] -- Demystifying Service Mesh -- The Service Mesh Contributions -- The Leading Service Mesh Solutions -- Why Service Mesh is Paramount? -- Service Mesh Architectures -- Monitoring the Service Mesh -- Service Mesh Deployment Models -- Conclusion -- Appendix -- Deploying the Red Hat OpenShift Service Mesh Control Plane -- References -- Chapter 13 Cloud-Native Computing: The Security Challenges and the Solution Approaches -- Introduction to Cloud Capabilities -- Delineating the Cloud-Native Paradigm -- Why Cloud-Native Computing -- About Cloud-Native Applications -- Beginning of Cloud-Native Application Security -- Cloud-Native Security Challenges -- Capabilities of Cloud-Native Security Solutions -- Cloud-Native Application Security Procedures -- Securing Cloud-Native Applications -- Pillars of Cloud-Native Security -- Cloud-Native Security: Best Practices -- Kubernetes Security Best Practices -- Container Security Best Practices -- Cloud-Native Security Best Practices -- The Emergence of Cloud-Native Security Products and Platforms -- Key Properties of Cloud-Native Security Platforms -- Cloud Workload Protection Platforms -- Kubernetes Security Products -- AIOps for Cloud-Native Security -- Conclusion -- Reference. Chapter 14 Microservices Security: The Concerns and the Solution Approaches -- Microservice Security Challenges and Concerns -- Best Practices to Secure Microservices -- How to Implement Fundamental Authentication and Authorization Strategies -- Dive Deeper into API Gateway -- APACHE APISIX -- Configuring APISIX -- Conclusion -- Further Reading -- Chapter 15 Setting Up Apache Kafka Clusters in a Cloud Environment and Secure Monitoring -- Introduction -- Introspecting Kafka -- Kafka Component Overview -- Guide to Set Up a Kafka Cluster -- Prerequisites -- Steps to Install -- Step 1: Setup virtual machines for Kafka -- Step 2: Configure Zookeeper and Kafka on both the machines -- zookeeper.service -- kafka.service -- Step 3: Test Zookeeper and Kafka installation -- Kafka Command Line Features -- Set Up Your Monitoring Tools for Your Cluster: Prometheus and Grafana -- Fetch Metrics Using Prometheus -- Install JMX Exporter Agent on Kafka broker -- Create Prometheus as a service on the Admin machine -- Visualize using Grafana -- Secure your cluster -- Encryption -- Authentication -- Authorization -- Conclusion -- Further Reading -- Chapter 16 Installing Knative Serving On EKS -- Prerequisites -- EKS Installation Procedure -- Installing Knative Serving Using YAML Files -- Prerequisites -- System Requirements -- Install the Serving component -- Verify the Installation -- Configure DNS -- Install kn Using a Binary -- Install kn Using Go -- Sample Application -- Creating Your Deployment with the Knative CLI -- Interacting with Your App -- Index -- EULA. |
| Record Nr. | UNINA-9910830945803321 |
Raj Pethuru
|
||
| Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cloud-Native Computing : How to Design, Develop, and Secure Microservices and Event-Driven Applications
| Cloud-Native Computing : How to Design, Develop, and Secure Microservices and Event-Driven Applications |
| Autore | Raj Pethuru |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
| Descrizione fisica | 1 online resource (354 pages) |
| Altri autori (Persone) |
VangaSkylab
ChaudharyAkshita |
| ISBN |
1-119-81479-0
1-119-81477-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 The Dawning of the Digital Era -- Demystifying the Digitization Paradigm -- Delineating the Digitalization Technologies -- Trendsetting Technologies for the Digital Era -- Why Digitization Is Indispensable -- The Connectivity and Integration Options -- The Promising Digital Intelligence Methods -- The Technological Approaches Toward Smarter Environments -- Briefing the Brewing Idea of Digital Twin -- Envisioning the Digital Universe -- Cloud-Native Applications (CNAs) -- Conclusion -- References -- Chapter 2 The Cloud-Native Computing Paradigm for the Digital Era -- Introduction -- The Onset of the Digital Era -- The Maturity of Software-defined Cloud Environments -- The Hybrid Model of Microservices Architecture (MSA) and Event-driven Architecture (EDA) -- The Aspect of Containerization -- The Emergence of Container Lifecycle Management Platforms -- Tending Toward Cloud-Native Computing -- Demystifying the Cloud-Native Architecture Style -- Distinguishing Cloud-Native Infrastructure -- Cloud-Native Security -- Cloud-Native Computing Advantages -- Conclusion -- References -- Chapter 3 Kubernetes Architecture, Best Practices, and Patterns -- Introduction -- The Emergence of Containerized Applications for IT Portability -- Microservices Architecture (MSA) Applications for IT Agility and Adaptivity -- The Onset of Containerized Cloud Environments -- The Need for Container Orchestration Platform Solutions -- The Significance of Kubernetes for Cloud-Native Systems -- Kubernetes for Edge Cloud Environments -- Kubernetes for Multi-Cloud Implementations -- Delineating the Kubernetes' Master-Slave Architecture -- The Special Features of the Kubernetes Platform -- Best Practices for Efficient and Effective Kubernetes -- Kubernetes Patterns.
Conclusion -- References -- Chapter 4 The Observability, Chaos Engineering, and Remediation for Cloud-Native Reliability -- Introduction -- The Emergence of Cloud-Native Observability -- The Key Motivations for Cloud-Native Applications -- Cloud-Native Applications: The Realization Technologies -- DevOps for Cloud-Native Applications (CNAs) -- Container Orchestration Platforms -- The Cloud-Native Application Challenges [1, 2] -- Cloud-Native Resiliency -- Cloud-Native Chaos Engineering -- Cloud-Native Observability [3-5] -- Cloud-Native Observability: The Benefits -- Cloud-Native Observability for Chaos Engineering -- AIOps-Enabled Cloud-Native Observability -- Building System Resilience Through AIOps -- Cloud-Native Remediation -- Conclusion -- References -- Chapter 5 Creating Kubernetes Clusters on Private Cloud (VMware vSphere) -- Introduction -- Purpose -- Scope -- Deployment Pre-requirements -- Prerequisites -- vCenter Requirements -- Cluster Resources -- Required IP Addresses -- DNS Records -- Create Local Linux Installer VM on VMware vSphere -- Generating an SSH Private Key and Adding it to the Agent -- Create DHCP Server -- Download OpenShift Installation for vSphere -- Procedure -- Adding vCenter Root CA Certificates to your Installer VM -- Deploying the OCP Cluster on VMware vSphere -- Installing the CLI on Linux -- Uninstall OpenShift Cluster -- Considerations When you Delete OpenShift for VMware (https://cloud.ibm.com/docs/vmwaresolutions) -- Conclusion -- Further Reading -- Chapter 6 Creating Kubernetes Clusters on Public Cloud (Microsoft Azure) -- Introduction -- Prerequisites -- Configuring a Public DNS Zone in Azure -- DNS Creation -- Prerequisites -- Create a DNS Zone -- Required Azure Roles -- Creating a Service Principal -- Azure CLI Setup -- Manually Create IAM -- Start Installation of OCP -- Uninstall Cluster -- Conclusion. Further Reading -- Chapter 7 Design, Development, and Deployment of Event-Driven Microservices Practically -- Introduction -- Technology Stack to Build Microservices -- Express Framework -- Steps to Set Up Your Project -- Blog Post Microservice -- Comments Microservice -- Implementation of Event-Driven Model -- Event Bus -- Deployment Strategies -- Conclusion -- Chapter 8 Serverless Computing for the Cloud-Native Era -- Introduction -- The Key Motivations for Serverless Computing [1, 2] -- Briefing Serverless Computing -- The Serverless Implications -- The Evolution of Serverless Computing [3, 4] -- Serverless Application Patterns -- Containers as the Function Runtime -- Serverless Computing Components [5, 6] -- Advantages of Using a Serverless Database -- Disadvantages of Using Serverless Databases -- Top Benefits of Serverless Computing -- Overcoming Serverless Obstacles -- The Future of Serverless Computing -- Conclusion -- Appendix -- Knative for Serverless Computing -- References -- Chapter 9 Instaling Knative on a Kubernetes Cluster -- Introduction -- Knative Serving Resources -- Further Reading -- Chapter 10 Delineating Cloud-Native Edge Computing -- Introduction -- Briefing Cloud-Native Computing -- Technical and Business Cases for Cloud-Native Computing [3, 4] -- The Emergence of Edge Computing -- Cloud-Native Technologies for Edge Computing -- Benefits of Bringing the Cloud-Native Principles to the Edge -- The Deployment Scenarios at the Edge -- Kubernetes Deployment Options for Edge Computing -- Cloud-Native at the Edge: The Use Cases -- Navigating Heterogeneous Environments at the Edge -- Monitoring Kubernetes-Enabled Edge Environments -- Edge Analytics for Real-Time Video Surveillance -- Describing Edge AI -- Conclusion -- References -- Chapter 11 Setting up a Kubernetes Cluster using Azure Kubernetes Service -- Introduction. Benefits of Azure Kubernetes Service -- Purpose -- Scope -- An Introduction to Azure Kubernetes Service -- Features of Azure Kubernetes Services -- Azure Kubernetes Service Use Cases -- Common Uses for Azure Kubernetes Service -- High-Level Architecture -- Architecture Design -- Deployment Pre-Requisites -- Conclusion -- Further Reading -- Chapter 12 Reliable Cloud-Native Applications through Service Mesh -- Introduction -- Delineating the Containerization Paradigm -- Demystifying Microservices Architecture -- Decoding the Growing Role of Kubernetes for the Container Era -- Describing the Service Mesh Concept [1-3] -- Demystifying Service Mesh -- The Service Mesh Contributions -- The Leading Service Mesh Solutions -- Why Service Mesh is Paramount? -- Service Mesh Architectures -- Monitoring the Service Mesh -- Service Mesh Deployment Models -- Conclusion -- Appendix -- Deploying the Red Hat OpenShift Service Mesh Control Plane -- References -- Chapter 13 Cloud-Native Computing: The Security Challenges and the Solution Approaches -- Introduction to Cloud Capabilities -- Delineating the Cloud-Native Paradigm -- Why Cloud-Native Computing -- About Cloud-Native Applications -- Beginning of Cloud-Native Application Security -- Cloud-Native Security Challenges -- Capabilities of Cloud-Native Security Solutions -- Cloud-Native Application Security Procedures -- Securing Cloud-Native Applications -- Pillars of Cloud-Native Security -- Cloud-Native Security: Best Practices -- Kubernetes Security Best Practices -- Container Security Best Practices -- Cloud-Native Security Best Practices -- The Emergence of Cloud-Native Security Products and Platforms -- Key Properties of Cloud-Native Security Platforms -- Cloud Workload Protection Platforms -- Kubernetes Security Products -- AIOps for Cloud-Native Security -- Conclusion -- Reference. Chapter 14 Microservices Security: The Concerns and the Solution Approaches -- Microservice Security Challenges and Concerns -- Best Practices to Secure Microservices -- How to Implement Fundamental Authentication and Authorization Strategies -- Dive Deeper into API Gateway -- APACHE APISIX -- Configuring APISIX -- Conclusion -- Further Reading -- Chapter 15 Setting Up Apache Kafka Clusters in a Cloud Environment and Secure Monitoring -- Introduction -- Introspecting Kafka -- Kafka Component Overview -- Guide to Set Up a Kafka Cluster -- Prerequisites -- Steps to Install -- Step 1: Setup virtual machines for Kafka -- Step 2: Configure Zookeeper and Kafka on both the machines -- zookeeper.service -- kafka.service -- Step 3: Test Zookeeper and Kafka installation -- Kafka Command Line Features -- Set Up Your Monitoring Tools for Your Cluster: Prometheus and Grafana -- Fetch Metrics Using Prometheus -- Install JMX Exporter Agent on Kafka broker -- Create Prometheus as a service on the Admin machine -- Visualize using Grafana -- Secure your cluster -- Encryption -- Authentication -- Authorization -- Conclusion -- Further Reading -- Chapter 16 Installing Knative Serving On EKS -- Prerequisites -- EKS Installation Procedure -- Installing Knative Serving Using YAML Files -- Prerequisites -- System Requirements -- Install the Serving component -- Verify the Installation -- Configure DNS -- Install kn Using a Binary -- Install kn Using Go -- Sample Application -- Creating Your Deployment with the Knative CLI -- Interacting with Your App -- Index -- EULA. |
| Record Nr. | UNINA-9910623986603321 |
Raj Pethuru
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Demystifying Graph Data Science : Graph Algorithms, Analytics Methods, Platforms, Databases, and Use Cases
| Demystifying Graph Data Science : Graph Algorithms, Analytics Methods, Platforms, Databases, and Use Cases |
| Autore | Raj Pethuru |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2022 |
| Descrizione fisica | 1 online resource (363 pages) |
| Disciplina | 511.5 |
| Altri autori (Persone) |
KumarAbhishek
García DíazVicente Muthuraman SundarNachamai |
| Collana | Computing and Networks |
| Soggetto topico | Graph algorithms |
| ISBN |
1-83724-484-7
1-5231-5341-5 1-83953-489-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title -- Copyright -- Contents -- About the Editors -- Book preface -- 1 Toward graph data science -- 1.1 Introduction -- 1.2 Concept of graph -- 1.3 Graph travels on analysis -- 1.4 Graph plotting -- 1.5 Network graph of an ETFL ARK Funds -- 1.6 Twitch verse -- 1.6.1 Use of graph theory mechanisms for solving data science problems -- 1.7 Data visualization techniques -- 1.8 Present research ongoing -- 1.9 Next 60 years of data science -- 1.10 Scientific data analytics tested empirically -- 1.11 Conclusion -- 1.12 Future work -- References -- 2 Data science: the Artificial Intelligence (AI) algorithms-inspired use cases -- 2.1 Introduction -- 2.2 The evolution and elevation of data science -- 2.3 Anomaly detection -- 2.3.1 Binary and multiclass classification -- 2.3.2 Personalization -- 2.4 Fraud detection -- 2.4.1 Challenges to fraud detection -- 2.4.2 Best practices for observability with fraud models -- 2.4.3 Important metrics -- 2.4.4 Performance degradation -- 2.4.5 Overcoming the drift problem -- 2.5 AI-enabled fake news detection -- 2.6 AI-inspired credit card fraud detection -- 2.7 AI-empowered forest fire prediction -- 2.8 AI-induced breast cancer (BC) detection -- 2.8.1 Phase 0 - preparation of data -- 2.8.2 Phase 1: data investigation -- 2.8.3 Phase 2: data categories -- 2.8.4 Phase 3: feature scaling -- 2.8.5 Phase 4: ML model selection -- 2.8.6 Phase 5 - model evaluation -- 2.8.7 Phase 6 - model optimization -- 2.9 Stopping cyber attacks by AI algorithms -- 2.10 ML for cyber security -- 2.11 Network protection -- 2.12 Endpoint detection and response (EDR) -- 2.13 Threat detection by EDR -- 2.14 Containment -- 2.15 Application security -- 2.16 User behavior -- 2.17 Process behavior -- 2.18 The modern data architecture (MDA) -- 2.18.1 Smart applications -- 2.18.2 Smarter edge.
2.18.3 Faster, more accurate, and easier management -- 2.19 The Kafka platform for data scientists -- 2.20 Kafka APIs -- 2.21 Conclusion -- References -- 3 Accelerating graph analytics -- 3.1 Introduction -- 3.2 Graph analytics methods to deliver smarter AI -- 3.2.1 Semi supervised learning with graph algorithms -- 3.3 Data preparation -- 3.4 Steps to get started with graph machine learning model -- 3.4.1 Structured query-oriented knowledge graphs -- 3.4.2 Query-based feature engineering -- 3.4.3 Extending the use of graph algorithms -- 3.4.4 Approaches based on local similarity -- 3.4.5 Approaches that are based on global similarity -- 3.4.6 Approaches based on quasi-local similarity -- 3.5 Graph embeddings -- 3.5.1 Why graph embeddings are needed? -- 3.5.2 GNN and native learning -- 3.5.3 Based on the graph type -- 3.6 Applications -- 3.6.1 Classification of text -- 3.6.2 Translation by a neural computer -- 3.6.3 Image classification is a technique used in the field of image manipulation -- 3.6.4 Object detection is a feature that allows detecting of objects in the environment -- 3.6.5 Semantic segmentation is the process of separating words based on their semantic meaning -- 3.6.6 Combinatorial optimization is a technique for maximizing the number of options -- 3.7 Conclusion -- References -- 4 Introduction to IoT data analytics and its use cases -- 4.1 Background and context -- 4.1.1 Cost of compute -- 4.1.2 AI/ML frameworks and optimizations -- 4.1.3 Dedicated hardware components -- 4.1.4 Sensors and data -- 4.1.5 Pre-trained models -- 4.1.6 Retail -- 4.1.7 Medical -- 4.1.8 Industrial -- 4.1.9 Automotive -- 4.1.10 Education -- 4.1.11 Conclusion -- 4.2 IoT analytics system and concepts -- 4.2.1 Overview -- 4.2.2 Data ingestion -- 4.2.3 Analytics pipeline -- 4.3 Network -- 4.3.1 Wired network technologies -- 4.3.2 Wireless network technologies. 4.4 AI -- 4.4.1 Training strategies -- 4.4.2 ML -- 4.4.3 Decision tree (DT) and random forest (RF) -- 4.4.4 Support vector machine (SVM) -- 4.4.5 DL -- 4.4.6 Convolutional neural networks (CNN) -- 4.4.7 Architectures and implementations -- 4.4.8 Other neural networks -- 4.5 Orchestration -- 4.5.1 Container technologies -- 4.5.2 Overview -- 4.5.3 Architecture -- 4.5.4 Cluster constructs -- 4.5.5 Deploying a service -- 4.5.6 Containerizing the application -- 4.5.7 Deployment -- 4.5.8 Microservices -- 4.6 IoT deployments -- 4.6.1 Edge deployments -- 4.6.2 Hybrid cloud edge deployments -- References -- 5 Demystifying digital transformation technologies in healthcare -- 5.1 Introduction -- 5.2 Primal elements driving the medical industry -- 5.2.1 Recent research in healthcare -- 5.2.2 Medical expenses and their surge -- 5.2.3 Improvement in mortality rate of older people -- 5.2.4 Modulating relationship -- 5.2.5 Eccentric frameworks -- 5.3 Technology trends in healthcare -- 5.3.1 Smart watches and clinical device network -- 5.3.2 Intelligence and data analytics -- 5.3.3 Augmented reality (AR) and virtual reality (VR) -- 5.3.4 Telemedicine -- 5.4 Technology challenges in healthcare -- 5.4.1 Data processing -- 5.4.2 Cybersecurity -- 5.4.3 Digital user experience -- 5.5 Big Data in healthcare -- 5.6 Big Data in healthcare applications -- 5.7 Challenges for Big Data in healthcare -- 5.7.1 Data collection challenges -- 5.7.2 Procedure and method challenges -- 5.7.3 Data management challenges -- 5.7.4 Significant factors that support health plan agencies in enhancing quality measurement results -- 5.8 Case study -- 5.9 Proposed method -- 5.10 Experimental results and discussion -- 5.10.1 Accuracy analysis -- 5.10.2 Average performance analysis -- 5.10.3 Average response time (ART) -- 5.10.4 Pattern classification time -- 5.10.5 Error rate -- 5.10.6 Conclusion. References -- 6 Semantic knowledge graph technologies in data science -- 6.1 Introduction -- 6.2 Knowledge extraction and information extraction -- 6.2.1 Professional-based systems -- 6.2.2 Construction of knowledge graph -- 6.2.3 Conceptualization -- 6.3 Creating knowledge graphs using semantic models -- 6.3.1 System construction -- 6.3.2 Synopsis mapping -- 6.3.3 Semantic model -- 6.4 Semantic graph infrastructure -- 6.4.1 Sources of knowledge -- 6.4.2 Extraction of knowledge -- 6.4.3 Convergence of knowledge -- 6.4.4 Processing, collection, and graphical demonstration of knowledge graphs -- 6.5 Semantic knowledge graph -- 6.5.1 Architecture -- 6.5.2 Characteristics -- 6.5.3 Evaluations -- 6.6 Finance industry - a case study for knowledge graph -- 6.6.1 Data authority -- 6.6.2 Automated fraud detection -- 6.6.3 Knowledge management -- 6.6.4 Insider trading -- 6.6.5 AI in capital funding -- 6.6.6 Enabling venture capitalization -- 6.6.7 Analyzing credentials -- 6.6.8 Product-based community analysis -- 6.6.9 Challenges -- 6.7 Conclusion -- References -- 7 Why graph analytics? -- 7.1 Introduction -- 7.1.1 Types of graphs -- 7.1.2 Difference between relational analytics and graph analytics -- 7.2 Big graph analytics -- 7.2.1 Vs of big graph -- 7.3 The basics of graph analytics -- 7.4 Graph analytic techniques -- 7.4.1 Path analytic -- 7.4.2 Analytical connectivity -- 7.4.3 Community analytic -- 7.4.4 Centrality analytic -- 7.5 Big graph analytics algorithms -- 7.5.1 PageRank -- 7.5.2 Connected component -- 7.5.3 Distributed minimum spanning tree -- 7.5.4 Graph search -- 7.5.5 Clustering -- 7.6 Big graph analytics framework for healthcare -- 7.6.1 Big graph characteristics -- 7.6.2 Impact of big graph analytics in healthcare -- 7.6.3 Proposed framework for patient data analytics -- 7.6.4 Key players of proposed model -- 7.7 Implementation and results. 7.8 Conclusion -- References -- 8 Graph technology: a detailed study of trending techniques and technologies of graph analytics -- 8.1 Introduction -- 8.1.1 Centrality -- 8.1.2 Degree centrality -- 8.1.3 Types of graphs -- 8.1.4 Graph algorithms and graph analytics implementations -- 8.1.5 Page rank -- 8.1.6 Graph database -- 8.1.7 Applications -- 8.1.8 Major graph analytics applications -- 8.2 Technology for graph databases -- 8.2.1 Enactment -- 8.2.2 Flexibility -- 8.2.3 Agility -- 8.3 Graph data science? -- 8.3.1 Graph data science applications -- 8.3.2 Graph data science library -- 8.4 Defined graph database -- 8.4.1 Forms of graph databases -- 8.4.2 Graphs of properties -- 8.4.3 Graphs in RDF -- 8.4.4 What are graphs and graph libraries and how do they work? -- 8.4.5 Benefits in graph databases -- 8.4.6 What is the role of graph databases and graph analytics? -- 8.4.7 Graph database use case: money laundering -- 8.4.8 Social network review is a good example of how to use a graph database -- 8.4.9 Credit card theft is an example of how a graph database can be used -- 8.4.10 The evolution of graph databases -- 8.5 Graph analytics trending techniques and technologies -- 8.5.1 Trend 1: Artificial intelligence (AI) that is smarter, quicker, and more accountable -- 8.5.2 Trend 2 -- 8.5.3 The third trend is decision intelligence -- 8.5.4 Trend 4th: X analytics -- 8.5.5 Trend 5th: enhanced data protection -- 8.6 Conclusion -- References -- 9 A holistic analysis to identify the efficiency of data growth using a standardized method of non-functional requirements in graph applications -- 9.1 Introduction -- 9.1.1 Key features of graph database -- 9.1.2 Process related to graph database -- 9.2 Literature survey -- 9.2.1 Graph data modeling -- 9.2.2 Non-functional requirements -- 9.2.3 Building of graph-based application model. 9.3 Various working techniques in graph database. |
| Record Nr. | UNINA-9911004860003321 |
Raj Pethuru
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Engineering the Metaverse : Enabling Technologies, Platforms and Use Cases
| Engineering the Metaverse : Enabling Technologies, Platforms and Use Cases |
| Autore | Raj Pethuru |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2024 |
| Descrizione fisica | 1 online resource (394 pages) |
| Disciplina | 006.8 |
| Altri autori (Persone) |
KumarPrasanna
SharmaD. P SainiKavita RaoB. Narendra Kumar KosuriHarshavardhan ChallaNagendra Panini RanjanaR |
| Collana | Computing and Networks Series |
| Soggetto topico |
Metaverse
Virtual reality |
| ISBN |
1-83724-351-4
1-83953-881-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Contents -- About the editor -- 1. Demystifying metaverse system engineering | Pethuru Raj -- 2. Metaverse enabling technologies and industry use cases | Pethuru Raj -- 3. Virtual, augmented, mixed, and extended reality for the metaverse | Prasanna Kumar -- 4. Immersive technologies for the metaverse | Harshavardhan Kosuri -- 5. 3D modeling for the metaverse | Harshavardhan Kosuri -- 6. Generative AI for the enterprise metaverse system engineering | Pethuru Raj -- 7. Digital twin and metaverse | Kavita Saini and Ritu Gupta -- 8. Metaverse world and seven layers | Kavita Saini -- 9. The convergence of spatial computing, edge computing, neuromorphic computing, HPC, quantum computing, and data analytics for the metaverse | D.P. Sharma -- 10. The convergence of Web 3.0 with AR, VR, IoT, and AI for shaping metaverse engineering | D.P. Sharma -- 11. Detailing the unique power of the blockchain technology for the metaverse world | Kavita Saini, K. Sivakumar, B.S. Vidhyasagar and H. Anwar Basha -- 12. Metaverse use cases (individual and industrial) and application domains | Harshavardhan Kosuri -- 13. Application domains for the metaverse | Prasanna Kumar -- 14. Illustrating metaverse-driven smart manufacturing | Pethuru Raj -- 15. The metaverse as an educational tool: enhancing learning with blockchain technology | B. Narendra Kumar Rao and Shaik Shameen Taz -- 16. IoT, AI, and metaverse in smart healthcare systems: a review of recent advances and future trends | B. Narendra Kumar Rao, N. Bala Krishna and Chinthapatla Pranay Varna -- 17. Application of metaverse in regenerative medicine: applications and challenges | R. Ranjana, R.K. Sahana and B. Narendra Kumar Rao.
18. Metaverse for heart illness prediction and analysis | Bollapalli Althaph, Nagendra Panini Challa, Narendra Kumar Rao, Kamepalli SL Prasanna, Nagaraju Jajam, Venkata Sasi Deepthi Ch and Beebi Naseeba -- 19. Metaverse for Indian palm leaf manuscripts | Basaraboyina Yohoshiva, Nagendra Panini Challa, Narendra Kumar Rao, Beebi Naseeba and Venkata Sasi Deepthi Ch -- The conclusion and the future of the metaverse -- Index. |
| Record Nr. | UNINA-9911006946903321 |
Raj Pethuru
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Explainable Artificial Intelligence (XAI) : Concepts, Enabling Tools, Technologies and Applications
| Explainable Artificial Intelligence (XAI) : Concepts, Enabling Tools, Technologies and Applications |
| Autore | Raj Pethuru |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2023 |
| Descrizione fisica | 1 online resource (465 pages) |
| Disciplina | 006.3 |
| Altri autori (Persone) |
KöseUtku
SakthivelUsha NagarajanSusila AsirvadamVijanth Sagayan |
| Collana | Computing and Networks Series |
| Soggetto topico |
Artificial intelligence
Machine learning |
| ISBN |
1-83724-425-1
1-5231-6305-4 1-83953-696-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title -- Copyright -- Contents -- About the editors -- Preface -- 1 An overview of past and present progressions in XAI -- 1.1 Introduction -- 1.2 Background study -- 1.2.1 Key-related ideas of XAI -- 1.3 Overview of XAI -- 1.4 History of XAI -- 1.5 Top AI patterns -- 1.6 Conclusion -- References -- 2 Demystifying explainable artificial intelligence (EAI) -- 2.1 Introduction -- 2.1.1 An overview of artificial intelligence -- 2.1.2 Introduction to explainable AI -- 2.2 Concept of XAI -- 2.3 Explainable AI (EAI) architecture -- 2.4 Learning techniques -- 2.5 Demystifying EAI methods -- 2.5.1 Clever Hans -- 2.5.2 Different users and goals in EAI -- 2.5.3 EAI as quality assurance -- 2.6 Implementation: how to create explainable solutions -- 2.6.1 Method taxonomy -- 2.6.2 Rules - intrinsic local explanations -- 2.6.3 Prototypes -- 2.6.4 Learned representation -- 2.6.5 Partial dependence plot - global post-hoc explanations -- 2.6.6 Feature attribution (importance) -- 2.7 Applications -- 2.8 Conclusion -- References -- 3 Illustrating the significance of explainable artificial intelligence (XAI) -- 3.1 Introduction -- 3.2 The growing power of AI -- 3.3 The challenges and concerns of AI -- 3.4 About the need for AI explainability -- 3.5 The importance of XAI -- 3.6 The importance of model interpretation -- 3.6.1 Model transparency -- 3.6.2 Start with interpretable algorithms -- 3.6.3 Standard techniques for model interpretation -- 3.6.4 ROC curve -- 3.6.5 Focus on feature importance -- 3.6.6 Partial dependence plots (PDPs) -- 3.6.7 Global surrogate models -- 3.6.8 Criteria for ML model interpretation methods -- 3.7 Briefing feature importance scoring methods -- 3.8 Local interpretable model-agnostic explanations (LIMEs) -- 3.9 SHAP explainability algorithm -- 3.9.1 AI trust with symbolic AI.
3.10 The growing scope of XAI for the oil and gas industry -- 3.10.1 XAI for the oil and gas industry -- 3.11 Conclusion -- Bibliography -- 4 Inclusion of XAI in artificial intelligence and deep learning technologies -- 4.1 Introduction -- 4.2 What is XAI? -- 4.3 Why is XAI important? -- 4.4 How does XAI work? -- 4.5 Role of XAI in machine learning and deep learning algorithm -- 4.6 Applications of XAI in machine learning in deep learning -- 4.7 Difference between XAI and AI -- 4.8 Challenges in XAI -- 4.9 Advantages of XAI -- 4.10 Disadvantages of XAI -- 4.11 Future scope of XAI -- 4.12 Conclusion -- References -- 5 Explainable artificial intelligence: tools, platforms, and new taxonomies -- 5.1 Introduction -- 5.2 ML-based systems and awareness -- 5.3 Challenges of the time -- 5.3.1 Requirement of explainability -- 5.3.2 Impact of high-stake decisions -- 5.3.3 Concerns of society -- 5.3.4 Regulations and interpretability issue -- 5.4 State-of-the-art approaches -- 5.5 Assessment approaches -- 5.6 Drivers for XAI -- 5.6.1 Tools and frameworks -- 5.7 Discussion -- 5.7.1 For researchers outside of computer science: taxonomies -- 5.7.2 Taxonomies and reviews focusing on specific aspects -- 5.7.3 Fresh perspectives on taxonomy -- 5.7.4 Taxonomy levels at new levels -- 5.8 Conclusion -- References -- 6 An overview of AI platforms, frameworks, libraries, and processes -- 6.1 Introduction to AI -- 6.2 Role of AI in the 21st century -- 6.2.1 The 2000s -- 6.2.2 The 2010s -- 6.2.3 The future -- 6.3 How AI transformed the world -- 6.3.1 Transportation -- 6.3.2 Finance -- 6.3.3 Healthcare -- 6.3.4 Intelligent cities -- 6.3.5 Security -- 6.4 AI process -- 6.5 TensorFlow -- 6.5.1 Installation -- 6.5.2 TensorFlow basics -- 6.6 Scikit learn -- 6.6.1 Features -- 6.6.2 Installation -- 6.6.3 Scikit modeling -- 6.6.4 Data representation in scikit -- 6.7 Keras. 6.7.1 Features -- 6.7.2 Building a model in Keras -- 6.7.3 Applications of Keras -- 6.8 Open NN -- 6.8.1 Application -- 6.8.2 RNN -- 6.9 Theano -- 6.9.1 An overview -- 6.10 Why go for Theano Python library? -- 6.10.1 PROS -- 6.10.2 CONS -- 6.11 Basics of Theano -- 6.11.1 Subtracting two scalars -- 6.11.2 Adding two scalars -- 6.11.3 Adding two matrices -- 6.11.4 Logistic function -- References -- 7 Quality framework for explainable artificial intelligence (XAI) and machine learning applications -- 7.1 Introduction -- 7.2 Background -- 7.3 Integrated framework for AI applications development -- 7.4 AI systems characteristics vs. SE best practices -- 7.4.1 Explainable AI characteristics -- 7.5 ML lifecycle (model, data-oriented, and data analytics-oriented lifecycle) -- 7.6 AI/ML requirements engineering -- 7.7 Software effort estimation for AMD, RL, and NLP systems -- 7.7.1 Modified COCOMO model for AI, ML, and NLP applications and apps -- 7.8 Software engineering framework for AI and ML (SEF4 AI and ML) applications -- 7.9 Reference Architecture for AI & -- ML -- 7.10 Evaluation of Reference Architecture (REF) for AI & -- ML: explainable Chatbot case study -- 7.11 Conclusions and further research -- References -- 8 Methods for explainable artificial intelligence -- 8.1 Preliminarily study -- 8.2 Importance of XAI for human-interpretable models -- 8.3 Overview of XAI techniques -- 8.4 Taxonomy of popular XAI methods -- 8.4.1 Backpropagation-based methods -- 8.4.2 Perturbation methods -- 8.4.3 Influence methods -- 8.4.4 Knowledge extraction -- 8.4.5 Concept methods -- 8.4.6 Visualization methods -- 8.4.7 Example-based explanation -- 8.5 Conclusion -- References -- 9 Knowledge representation and reasoning (KRR) -- 9.1 Introduction -- 9.2 Methodology -- 9.2.1 Reference model -- 9.2.2 Ontologies -- 9.2.3 Knowledge graphs. 9.2.4 Semantic web technologies -- 9.2.5 ML -- 9.2.6 Tools and techniques -- 9.3 Results and discussion -- 9.3.1 Case study: using different techniques for representing medical knowledge [7] -- 9.3.2 Case study: using different techniques for representing academic knowledge [8] -- 9.3.3 Case study: using different techniques for representing farmer knowledge [9] -- 9.3.4 Case study: social media knowledge representation techniques [10] -- 9.3.5 Case study: using different techniques for representing cyber security knowledge [11] -- 9.4 Conclusion and future work -- References -- 10 Knowledge visualization: AI integration with 360-degree dashboards -- 10.1 Introduction -- 10.2 Information visualization vs. knowledge visualization -- 10.3 Knowledge visualization in design thinking -- 10.4 Visualization in transferring knowledge -- 10.5 The knowledge visualization model -- 10.5.1 Knowledge visualization framework -- 10.6 Formats and examples of knowledge visualization -- 10.6.1 Conceptual diagrams -- 10.6.2 Visual metaphors -- 10.6.3 Knowledge animation -- 10.6.4 Knowledge maps -- 10.6.5 Knowledge domain visualization -- 10.7 Types and usage of knowledge visualization tools -- 10.8 Knowledge visualization templates -- 10.8.1 Mind maps -- 10.8.2 Swimlane diagrams -- 10.8.3 Matrix diagrams -- 10.8.4 Flowcharts -- 10.8.5 Concept maps -- 10.8.6 Funnel charts or diagrams -- 10.9 Visualization in machine learning -- 10.9.1 Decision trees -- 10.9.2 Decision graph -- 10.10 Conclusion -- References -- 11 Empowering machine learning with knowledge graphs for the semantic era -- 11.1 Introduction -- 11.2 Tending towards digitally transformed enterprises -- 11.3 The emergence of KGs -- 11.4 Briefing the concept of KGs -- 11.5 Formalizing KGs -- 11.6 Creating custom KGs -- 11.7 Characterizing KGs -- 11.8 Use cases of KGs -- 11.9 ML and KGs. 11.10 KGs for explainable and responsible AI -- 11.11 Stardog enterprise KG platform -- 11.12 What CANNOT be considered a KG? -- 11.13 Conclusion -- Bibliography -- 12 Enterprise knowledge graphs using ensemble learning and data management -- 12.1 Introduction -- 12.2 Current ensemble model learning -- 12.2.1 Bagging -- 12.2.2 Boosting -- 12.2.3 Random Forest -- 12.3 Related work and literature review -- 12.4 Methodology -- 12.4.1 Enhanced ensemble model framework -- 12.4.2 Training and testing datasets -- 12.4.3 Enhanced ensemble model and algorithm -- 12.5 Experimental setup and enterprise dataset -- 12.5.1 Ensemble models performance evaluation using enterprise knowledge graph -- 12.5.2 Tree classification as knowledge graph -- 12.6 Result and discussion -- 12.7 Conclusion -- References -- 13 Illustrating graph neural networks (GNNs) and the distinct applications -- 13.1 Introduction -- 13.2 Briefing the distinctions of graphs -- 13.3 The challenges -- 13.4 ML algorithms -- 13.5 DL algorithms -- 13.6 The emergence of GNNs -- 13.7 Demystifying DNNs on graph data -- 13.8 GNNs: the applications -- 13.9 The challenges for GNNs -- 13.10 Conclusion -- Bibliography -- 14 AI applications-computer vision and natural language processing -- 14.1 Object recognition -- 14.2 AI-powered video analytics -- 14.3 Contactless payments -- 14.4 Foot tracking -- 14.5 Animal detection -- 14.6 Airport facial recognition -- 14.7 Autonomous driving -- 14.8 Video surveillance -- 14.9 Healthcare medical detection -- 14.10 Computer vision in agriculture -- 14.10.1 Drone-based crop monitoring -- 14.10.2 Yield analysis -- 14.10.3 Smart systems for crop grading and sorting -- 14.10.4 Automated pesticide spraying -- 14.10.5 Phenotyping -- 14.10.6 Forest information -- 14.11 Computer vision in transportation -- 14.11.1 Safety and driver assistance -- 14.11.2 Traffic control. 14.11.3 Driving autonomous vehicles. |
| Record Nr. | UNINA-9911007174203321 |
Raj Pethuru
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||