top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Image and Video Technology [[electronic resource] ] : PSIVT 2019 International Workshops, Sydney, NSW, Australia, November 18–22, 2019, Revised Selected Papers / / edited by Joel Janek Dabrowski, Ashfaqur Rahman, Manoranjan Paul
Image and Video Technology [[electronic resource] ] : PSIVT 2019 International Workshops, Sydney, NSW, Australia, November 18–22, 2019, Revised Selected Papers / / edited by Joel Janek Dabrowski, Ashfaqur Rahman, Manoranjan Paul
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XII, 206 pages 106 illustrations., 90 illustrations in colour)
Disciplina 621.367
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Computer communication systems
Artificial intelligence
Computers
Pattern recognition
Application software
Image Processing and Computer Vision
Computer Communication Networks
Artificial Intelligence
Information Systems and Communication Service
Pattern Recognition
Computer Applications
ISBN 3-030-39770-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Rain Streak Removal with Well-Recovered Moving Objects From Video Sequences Using Photometric Correlation -- Face Analysis: State of the Art and Ethical Challenges -- Location Analysis Based Waiting Time Optimization -- In-Orbit Geometric Calibration of Firebird's Infrared Line Cameras -- Evaluation of Structures and Methods for Resolution Determination of Remote Sensing Sensors -- 3D Image Reconstruction from Multi-focus Microscopic Images -- Block-Wise Authentication and Recovery Scheme for Medical Images Focusing on Content Complexity -- GAN-based Method for Synthesizing Multi-Focus Cell Images -- Improving Image-Based Localization with Deep Learning: The Impact of the Loss Function -- Face-based Age and Gender Classification using Deep Learning Model -- SO-Net: Joint Semantic Segmentation and Obstacle Detection using Deep Fusion of Monocular Camera and Radar -- Deep Forest Approach for Facial Expression Recognition -- Weed Density Estimation Using Semantic Segmentation -- Detecting Global Exam Events in Invigilation Videos using 3D CNN -- Spatial Hierarchical Analysis Deep Neural Network for RGBD Object Recognition -- Reading Digital Video Clocks by Two Phases of Connected Deep Networks.
Record Nr. UNISA-996418204803316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Image and Video Technology : PSIVT 2019 International Workshops, Sydney, NSW, Australia, November 18–22, 2019, Revised Selected Papers / / edited by Joel Janek Dabrowski, Ashfaqur Rahman, Manoranjan Paul
Image and Video Technology : PSIVT 2019 International Workshops, Sydney, NSW, Australia, November 18–22, 2019, Revised Selected Papers / / edited by Joel Janek Dabrowski, Ashfaqur Rahman, Manoranjan Paul
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XII, 206 pages 106 illustrations., 90 illustrations in colour)
Disciplina 621.367
006.6
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Computer communication systems
Artificial intelligence
Computers
Pattern recognition
Application software
Image Processing and Computer Vision
Computer Communication Networks
Artificial Intelligence
Information Systems and Communication Service
Pattern Recognition
Computer Applications
ISBN 3-030-39770-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Rain Streak Removal with Well-Recovered Moving Objects From Video Sequences Using Photometric Correlation -- Face Analysis: State of the Art and Ethical Challenges -- Location Analysis Based Waiting Time Optimization -- In-Orbit Geometric Calibration of Firebird's Infrared Line Cameras -- Evaluation of Structures and Methods for Resolution Determination of Remote Sensing Sensors -- 3D Image Reconstruction from Multi-focus Microscopic Images -- Block-Wise Authentication and Recovery Scheme for Medical Images Focusing on Content Complexity -- GAN-based Method for Synthesizing Multi-Focus Cell Images -- Improving Image-Based Localization with Deep Learning: The Impact of the Loss Function -- Face-based Age and Gender Classification using Deep Learning Model -- SO-Net: Joint Semantic Segmentation and Obstacle Detection using Deep Fusion of Monocular Camera and Radar -- Deep Forest Approach for Facial Expression Recognition -- Weed Density Estimation Using Semantic Segmentation -- Detecting Global Exam Events in Invigilation Videos using 3D CNN -- Spatial Hierarchical Analysis Deep Neural Network for RGBD Object Recognition -- Reading Digital Video Clocks by Two Phases of Connected Deep Networks.
Record Nr. UNINA-9910373927403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MLSDA 2014 : proceedings of MLSDA 2014 the 2nd Workshop on Machine Learning for Sensory Data Analysis : 2 December, 2014, Gold Coast, QLD, Australia
MLSDA 2014 : proceedings of MLSDA 2014 the 2nd Workshop on Machine Learning for Sensory Data Analysis : 2 December, 2014, Gold Coast, QLD, Australia
Autore Rahman Ashfaqur
Pubbl/distr/stampa [Place of publication not identified], : ACM, 2014
Descrizione fisica 1 online resource (81 pages)
Collana ACM Other conferences
Soggetto topico Engineering & Applied Sciences
Computer Science
ISBN 1-4503-3159-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Machine Learning for Sensory Data Analysis 2014
Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis
Proceedings of the Machine Learning for Sensory Data Analysis 2014 2nd Workshop on Machine Learning for Sensory Data Analysis
MLSDA '14
Machine Learning for Sensory Data Analysis, Gold Coast, Australia, QLD, Australia - December 02 - 02, 2014
Record Nr. UNINA-9910376608503321
Rahman Ashfaqur  
[Place of publication not identified], : ACM, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the Australasian Joint Conference on Artificial Intelligence - Workshops / / edited by Jeremiah D. Deng, Ashfaqur Rahman
Proceedings of the Australasian Joint Conference on Artificial Intelligence - Workshops / / edited by Jeremiah D. Deng, Ashfaqur Rahman
Pubbl/distr/stampa New York, New York : , : Association for Computing Machinery, , 2018
Descrizione fisica 1 online resource (32 pages) : illustrations
Disciplina 006.3
Collana ACM international conference proceedings series
Soggetto topico Artificial intelligence
Data mining
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910412334903321
New York, New York : , : Association for Computing Machinery, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the Workshop on Time Series Analytics and Applications / / editors, Andrew Hellicar, Ashfaqur Rahman, Fernando Koch ; sponsor, ACM
Proceedings of the Workshop on Time Series Analytics and Applications / / editors, Andrew Hellicar, Ashfaqur Rahman, Fernando Koch ; sponsor, ACM
Pubbl/distr/stampa New York : , : ACM, , 2016
Descrizione fisica 1 online resource (47 pages)
Disciplina 519.55
Collana ACM International Conference Proceedings Series
Soggetto topico Time-series analysis
Multiagent systems
ISBN 1-4503-4820-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910376426203321
New York : , : ACM, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui