top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Design for reliability [[electronic resource] /] / edited by Dev Raheja, Louis J. Gullo
Design for reliability [[electronic resource] /] / edited by Dev Raheja, Louis J. Gullo
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (334 p.)
Disciplina 620/.00452
Altri autori (Persone) RahejaDev
GulloLouis J
Collana Wiley series in quality & reliability engineering
Soggetto topico Reliability (Engineering)
ISBN 1-280-87856-8
9786613719874
1-118-31003-9
1-118-31005-5
1-118-30999-5
Classificazione TEC007000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Design for Reliability; Contents; Contributors; Foreword; Preface; Introduction: What You Will Learn; 1 Design for Reliability Paradigms; Why Design for Reliability?; Reflections on the Current State of the Art; The Paradigms for Design for Reliability; Summary; References; 2 Reliability Design Tools; Introduction; Reliability Tools; Test Data Analysis; Summary; References; 3 Developing Reliable Software; Introduction and Background; Software Reliability: Definitions and Basic Concepts; Software Reliability Design Considerations; Operational Reliability Requires Effective Change Management
Execution-Time Software Reliability ModelsSoftware Reliability Prediction Tools Prior to Testing; References; 4 Reliability Models; Introduction; Reliability Block Diagram: System Modeling; Example of System Reliability Models Using RBDs; Reliability Growth Model; Similarity Analysis and Categories of a Physical Model; Monte Carlo Models; Markov Models; References; 5 Design Failure Modes, Effects, and Criticality Analysis; Introduction to FMEA and FMECA; Design FMECA; Principles of FMECA-MA; Design FMECA Approaches; Example of a Design FMECA Process; Risk Priority Number; Final Thoughts
References6 Process Failure Modes, Effects, and Criticality Analysis; Introduction; Principles of P-FMECA; Use of P-FMECA; What Is Required Before Starting; Performing P-FMECA Step by Step; Improvement Actions; Reporting Results; Suggestions for Additional Reading; 7 FMECA Applied to Software Development; Introduction; Scoping an FMECA for Software Development; FMECA Steps for Software Development; Important Notes on Roles and Responsibilities with Software FMECA; Lessons Learned from Conducting Software FMECA; Conclusions; References; 8 Six Sigma Approach to Requirements Development
Early Experiences with Design of ExperimentsSix Sigma Foundations; The Six Sigma Three-Pronged Initiative; The RASCI Tool; Design for Six Sigma; Requirements Development: The Principal Challenge to System Reliability; The GQM Tool; The Mind Mapping Tool; References; 9 Human Factors in Reliable Design; Human Factors Engineering; A Design Engineer's Interest in Human Factors; Human-Centered Design; Human Factors Analysis Process; Human Factors and Risk; Human Error; Design for Error Tolerance; Checklists; Testing to Validate Human Factors in Design; References
10 Stress Analysis During Design to Eliminate FailuresPrinciples of Stress Analysis; Mechanical Stress Analysis or Durability Analysis; Finite Element Analysis; Probabilistic vs. Deterministic Methods and Failures; How Stress Analysis Aids Design for Reliability; Derating and Stress Analysis; Stress vs. Strength Curves; Software Stress Analysis and Testing; Structural Reinforcement to Improve Structural Integrity; References; 11 Highly Accelerated Life Testing; Introduction; Time Compression; Test Coverage; Environmental Stresses of HALT; Sensitivity to Stresses; Design Margin; Sample Size
Conclusions
Record Nr. UNINA-9910141266203321
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design for reliability / / edited by Dev Raheja, Louis J. Gullo
Design for reliability / / edited by Dev Raheja, Louis J. Gullo
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2012
Descrizione fisica 1 online resource (334 p.)
Disciplina 620/.00452
Altri autori (Persone) RahejaDev
GulloLouis J
Collana Wiley series in quality & reliability engineering
Soggetto topico Reliability (Engineering)
ISBN 1-280-87856-8
9786613719874
1-118-31003-9
1-118-31005-5
1-118-30999-5
Classificazione TEC007000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Design for Reliability; Contents; Contributors; Foreword; Preface; Introduction: What You Will Learn; 1 Design for Reliability Paradigms; Why Design for Reliability?; Reflections on the Current State of the Art; The Paradigms for Design for Reliability; Summary; References; 2 Reliability Design Tools; Introduction; Reliability Tools; Test Data Analysis; Summary; References; 3 Developing Reliable Software; Introduction and Background; Software Reliability: Definitions and Basic Concepts; Software Reliability Design Considerations; Operational Reliability Requires Effective Change Management
Execution-Time Software Reliability ModelsSoftware Reliability Prediction Tools Prior to Testing; References; 4 Reliability Models; Introduction; Reliability Block Diagram: System Modeling; Example of System Reliability Models Using RBDs; Reliability Growth Model; Similarity Analysis and Categories of a Physical Model; Monte Carlo Models; Markov Models; References; 5 Design Failure Modes, Effects, and Criticality Analysis; Introduction to FMEA and FMECA; Design FMECA; Principles of FMECA-MA; Design FMECA Approaches; Example of a Design FMECA Process; Risk Priority Number; Final Thoughts
References6 Process Failure Modes, Effects, and Criticality Analysis; Introduction; Principles of P-FMECA; Use of P-FMECA; What Is Required Before Starting; Performing P-FMECA Step by Step; Improvement Actions; Reporting Results; Suggestions for Additional Reading; 7 FMECA Applied to Software Development; Introduction; Scoping an FMECA for Software Development; FMECA Steps for Software Development; Important Notes on Roles and Responsibilities with Software FMECA; Lessons Learned from Conducting Software FMECA; Conclusions; References; 8 Six Sigma Approach to Requirements Development
Early Experiences with Design of ExperimentsSix Sigma Foundations; The Six Sigma Three-Pronged Initiative; The RASCI Tool; Design for Six Sigma; Requirements Development: The Principal Challenge to System Reliability; The GQM Tool; The Mind Mapping Tool; References; 9 Human Factors in Reliable Design; Human Factors Engineering; A Design Engineer's Interest in Human Factors; Human-Centered Design; Human Factors Analysis Process; Human Factors and Risk; Human Error; Design for Error Tolerance; Checklists; Testing to Validate Human Factors in Design; References
10 Stress Analysis During Design to Eliminate FailuresPrinciples of Stress Analysis; Mechanical Stress Analysis or Durability Analysis; Finite Element Analysis; Probabilistic vs. Deterministic Methods and Failures; How Stress Analysis Aids Design for Reliability; Derating and Stress Analysis; Stress vs. Strength Curves; Software Stress Analysis and Testing; Structural Reinforcement to Improve Structural Integrity; References; 11 Highly Accelerated Life Testing; Introduction; Time Compression; Test Coverage; Environmental Stresses of HALT; Sensitivity to Stresses; Design Margin; Sample Size
Conclusions
Record Nr. UNINA-9910824839203321
Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui