Advances in gear theory and gear cutting tool design / / Stephen P. Radzevich and Michael Storchak, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (644 pages) |
Disciplina | 621.833 |
Soggetto topico |
Gearing - Manufacture
Gearing - Measurement |
ISBN | 3-030-92262-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910741158903321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent advances in gearing : scientific theory and applications / / editor Stephen P. Radzevich |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (560 pages) |
Disciplina | 621.833 |
Soggetto topico | Gearing - Design and construction |
ISBN | 3-030-64638-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Introduction -- Historical Background -- Uniqueness of this Publication -- Intended Audience -- Organization of this Book -- Contents -- Editors and Contributors -- Chapter 1: Kinematic Foundations of Scientific Classification of Gearing -- 1.1 Introduction -- 1.1.1 Vector Diagram of Gear Pair -- 1.1.1.1 Vector Diagram of Gear Pair Having Zero Complementary Degrees-of-Freedom -- 1.1.1.2 Concept of Vector Representation of Gear Pair Kinematics -- 1.1.1.3 Vector Diagram of Gear Pair Having a Plurality of Complementary Degrees-of-Freedom -- 1.1.2 Classification of Gear Vector Diagrams -- 1.1.2.1 Gear Vector Diagrams for Three-Degree-of-Freedom Gearing -- 1.1.2.2 Gear Vector Diagrams for Two-Degree-of-Freedom Gearing -- 1.1.2.3 Gear Vector Diagrams for One-Degree-of-Freedom Gearing -- 1.1.2.4 Gear Vector Diagrams for Zero-Degree-of-Freedom Gearing (with no Complementary DoF) -- 1.1.3 Line of Contact of Favorable Geometry in a Gear Pair -- 1.1.4 On Classification of Approximate Gearing -- 1.1.4.1 Origination of the Term ``Gear Generic Surface´´ -- 1.1.4.2 Evaluation of the Total Number of Possible Geometries of Gear Generic Surfaces -- 1.1.4.3 Possible Geometries of Axial Profile of Gear Generic Surfaces -- 1.1.4.4 Profile of Gear Generic Surface Constructed in Section by Plane at an Angle to Gear Axis -- 1.1.5 Possibility of Classification of Approximate Gearing -- 1.1.6 Examples of Implementation of Classification of Approximate Gearing -- 1.2 Concluding Remarks -- References -- Chapter 2: Theory and Applications Based on S-Gear Geometry -- 2.1 Introduction -- 2.1.1 Plastic Gears: Lifetime Testing -- 2.1.2 Planocentric Gearboxes with S-Gear Geometry -- 2.2 S-Gears Geometrical and Thermal Properties -- 2.2.1 Thermal Properties -- 2.2.2 Analytical Approach -- 2.3 Testing of Plastic Gears -- 2.3.1 Gear Geometry and Manufacturing.
2.3.2 Testing Arrangement -- 2.3.3 Experimental Results -- 2.3.4 Wear Detection -- 2.4 Planocentric Gearbox with S-Gear Geometry -- 2.4.1 Kinematic Circumstances -- 2.4.2 Gradual Development -- 2.4.3 Backlash and Stiffness -- 2.4.4 Kinematic Error -- 2.4.5 Influence of Geometric Tolerances -- 2.4.6 Single Pitch Deviation and Runout -- 2.5 Conclusion -- References -- Chapter 3: Kinematic Pairs: Novel Kinds and Classification -- 3.1 Introduction -- 3.1.1 Kinematic Pairs: Basics -- 3.1.2 Traditional Approach to Design and Analysis of Kinematic Pairs -- 3.1.3 Instantaneous Kinematics (Mobility) in Kinematic Pairs -- 3.1.4 Contact Geometry in Kinematic Pairs -- 3.1.4.1 Dupin indicatrix at Point of Functional Surface -- 3.1.4.2 Indicatrix of Conformity at Point of Contact of Two Functional Surfaces -- 3.1.5 Kinds of Functional Surfaces -- 3.1.6 Kinds of Kinematic Pairs -- 3.1.6.1 Kinematic Pairs that Feature ``Point-Contact´´ between Functional Surfaces -- Kinematic Pairs with True-Point-Contact of Functional Surfaces -- Kinematic Pairs with Locally-Line-Contact of Functional Surfaces -- Locally Surface-to-Surface Contact Kinematic Pairs I -- Conformity Criterion in Kinematic Pairs -- Kinds of High-Conformal Point-Contact Kinematic Pairs I -- 3.1.6.2 Kinematic Pairs that Feature ``Line-Contact´´ between the Functional Surfaces -- Kinematic Pairs with True-Line-Contact of Functional Surfaces -- Locally Surface-to-Surface Contact Kinematic Pairs II -- High-Conformal Point-Contact Kinematic Pairs II -- 3.1.6.3 Kinematic Pairs that Feature ``Surface-to-Surface-Contact´´ between Functional Surfaces -- 3.1.7 Classification of Kinematic Pairs -- 3.2 Concluding Remarks -- References -- Further Readings -- Chapter 4: High-Performance Plastic Gears -- 4.1 Introduction -- 4.1.1 State of the Art and Application of Plastic Gears -- 4.1.1.1 Materials and Properties. 4.1.1.2 Manufacturing -- 4.1.1.3 Design -- 4.1.1.4 Fields of Application -- 4.1.2 Design and Calculation Methods for Plastic Gear Applications -- 4.1.2.1 Tooth Temperature -- 4.1.2.2 Tooth Load Carrying Capacity Acc. To VDI 2736 -- Tooth Root Load Carrying Capacity -- Tooth Flank Load Carrying Capacity -- Frictional Wear Load Carrying Capacity -- 4.1.3 Recent Research Results -- 4.1.3.1 Thermal Behavior -- 4.1.3.2 Low Loss Plastic Gears -- 4.1.3.3 Tooth Root Load Carrying Capacity -- 4.1.3.4 Flank Load Carrying Capacity -- 4.1.3.5 Tribology -- 4.1.4 Challenges for the Future Application of Plastic Gears -- 4.2 Conclusion -- References -- Chapter 5: Application of Task-Based Conceptual Design Method for Gear Chamfering Mechanisms -- 5.1 Introduction -- 5.1.1 Task-Based Design Review -- 5.1.1.1 Task-Based Conceptual Design -- 5.1.1.2 Task-Based Analyses of Mechanical Objects -- 5.1.1.3 Task-Based Parametric Design and Optimization -- 5.1.1.4 Novel Task-Based Conceptual and Parametric Design Method -- 5.1.1.5 Tasks and Objectives -- 5.1.2 Theoretical Background of Current Chapter -- 5.1.2.1 Author´s Experience -- 5.1.2.2 ``Construction Bricks´´ -- 5.1.2.3 Building of a Mechanism -- 5.1.2.4 Visualization -- 5.1.2.5 Composition of Models -- 5.1.2.6 Synthesis Tools and Design Cycles -- 5.1.2.7 Modification Formats: Synthesis -- 5.1.2.8 Modification Formats: Analyses -- 5.1.2.9 Modification Formats: Parametric Design -- 5.1.3 Analyses of Gear Chamfering Methods -- 5.1.3.1 Set of Functions Describing Gear Chamfering Methods -- 5.1.3.2 Construction of a Point Model as Merit for Analyzing Gear Chamfering Methods (Table 5.1) -- 5.1.3.3 Mathematical and Physical Connections between Revealed Parameters of Gear Chamfering Methods -- 5.1.3.4 End Mill Gear Chamfering Method Analyses (Table 5.2) -- 5.1.3.5 Comb Mill Gear Chamfering Method Analysis (Table 5.3). 5.1.3.6 Plastic Deformer Gear Chamfering Method Analyses (Table 5.4) -- 5.1.3.7 Short Conclusions on Analyses -- 5.1.4 Synthesis of Gear Chamfering Mechanisms -- 5.1.4.1 Construction of a Linear Model for Synthesizing Gear Chamfering Methods (Table 5.5) -- 5.1.4.2 Using the Database for Completing Linear Model -- 5.1.4.3 Mathematical Expressions -- 5.1.4.4 Gear Chamfering Mechanism: Gear Engagement + Equidistant Tracking (Table 5.6) -- 5.1.4.5 Gear Chamfering Mechanism: Gear Engagement + Helical Movement (Table 5.7) -- 5.1.5 Parametric Design of Gear Chamfering Mechanisms -- 5.1.5.1 Task of Parametric Design and Optimization -- 5.1.5.2 Classical Approach of Parametric Design -- 5.1.5.3 Alternative Approach of Parametric Design -- 5.1.5.4 Procedure of Suggested Parametric Design -- 5.1.5.5 Surface Micro-Roughness -- 5.1.5.6 Procedure of Implementation of Suggested Parametric Design (Table 5.8) -- 5.2 Concluding Remarks -- References -- Chapter 6: A Brief Overview of the Evolution of the Scientific Theory of Gearing -- 6.1 Introduction -- 6.1.1 Main Periods in the Evolution of the Theory of Gearing -- 6.1.1.1 Pre-Eulerian Period of Evolution of the Gear Art -- 6.1.1.2 The Time when the Fundamental Contribution by L. Euler Has Been Done - The Origin of the Scientific Theory of Gearing -- Involute Tooth Profile for Parallel-Axes Gearing -- The Euler-Savary Formula -- Leonhard Euler and the Euler-Savary Formula -- 6.1.2 Accomplishments in the Theory of Gearing in the Time of the Fundamental contribution by L. Euler Are Briefly Summarized ... -- 6.1.2.1 Post-Eulerian Period of Evolution of the Theory of Gearing -- Robert Willis and the Fundamental Theorem of Parallel-Axes Gearing -- A Mistake Committed (1842) by Theodore Olivier -- Miscellaneous Improvements to the Gear Art -- The Research Carried out by Chaim Gochman. Equality of Base Pitches in Geometrically Accurate Parallel-Axes Gearing -- Tooth Flank Geometry in Geometrically Accurate Intersected-Axes Gearing -- Shishkov Equation of Contact, n VSigma = 0 -- Principal Planes and Reference Systems Associated with Gearing -- Contact Geometry: Indicatrix of Conformity at Point of Contact of Tooth Flanks -- Condition of Conjugacy pln x Vm ng = 0 of Interacting Tooth Flanks for Gearing of all Kinds -- Angular Base Pitches: Operating Angular Base Pitch in a Gear Pair -- Crossed-Axes Gearing with Line Contact between the Tooth Flanks (R-Gearing) -- Scientific Classification of Gearing -- Geometrically Accurate Real Gearing -- Generalized Form of Equation of Conjugacy of Interacting Tooth Flanks: For Gearing of all Kinds -- 6.1.3 Other Contributions to the Field of Geometrically Accurate Gearing -- 6.1.3.1 Grant Bevel Gearing -- 6.1.3.2 Contribution by Professor N.I. Kolchin -- 6.1.3.3 Novikov Conformal Gearing -- 6.1.3.4 Contribution by Professor V.a. Gavrilenko -- 6.1.3.5 Contribution by Jack Phillips -- 6.1.3.6 Contribution by Walton Musser -- 6.1.4 Developments in the Field of Approximate Gearing -- 6.1.4.1 Samuel Cone Double-Enveloping Worm Gearing -- 6.1.4.2 Approximate Bevel Gearing -- 6.1.4.3 Approximate Crossed-Axes Gearing -- 6.1.4.4 Face Gearing -- 6.1.5 Theory of Gearing at the Beginning of the Twenty-First Century: State of the Art -- 6.1.6 Favorable Approximate Gearing -- 6.1.7 Accomplishments in the Field of ``Non-circular´´ Gearing -- 6.1.8 Tentative Chronology of the Evolution of the Theory of Gearing -- 6.1.9 On Other Efforts that Pertain to the Evolution of the Scientific Theory of Gearing -- 6.2 Concluding Remarks -- References -- Further Readings -- Chapter 7: Hyperboloid-Type Hobs: Design, Manufacture, and Application -- 7.1 Introduction. 7.1.1 Accuracy and Performance of Hyperboloid-Type Hobs. |
Record Nr. | UNINA-9910523757403321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|