top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational methods based on peridynamic and nonlocal operators : theory and applications / / Timon Rabczuk, Huilong Ren and Xiaoying Zhuang
Computational methods based on peridynamic and nonlocal operators : theory and applications / / Timon Rabczuk, Huilong Ren and Xiaoying Zhuang
Autore Rabczuk Timon
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (327 pages)
Disciplina 004.0151
Collana Computational Methods in Engineering & the Sciences
Soggetto topico Continuum mechanics
Computer science - Mathematics
Operator theory
ISBN 3-031-20906-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Dual-horizon Peridynamics -- First order nonlocal operator method -- Nonlocal operator method for waveguides.
Record Nr. UNINA-9910672448703321
Rabczuk Timon  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods for Fracture
Computational Methods for Fracture
Autore Rabczuk Timon
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (404 p.)
Soggetto non controllato Brittle Fracture
microstructure
fatigue crack growth
fracture process zone (FPZ)
crack shape change
fracture network modeling
Mohr-Coulomb
fracture
SBFEM
topological insulator
fatigue
progressive collapse analysis
Phase-field model
loss of key components
concrete creep
compressive stress
rail squats
cracks
force transfer
rolling contact
damage-plasticity model
implicit gradient-enhancement
extended scaled boundary finite element method (X-SBFEM)
three-parameter model
LEFM
overall stability
EPB shield machine
metallic glass matrix composite
phase field
reinforced concrete core tube
bulk damage
ductility
thermomechanical analysis
incompatible approximation
moderate fire
finite element simulations
shear failure
FSDT
gradient-enhanced model
prestressing stress
self-healing
peridynamics
damage-healing mechanics
stress intensity factors
damage
dam stress zones
shear band
rock fracture
random fracture
surface crack
plate
steel reinforced concrete frame
super healing
brittle material
geometric phase
FE analysis
grouting
rock
elastoplastic behavior
parameters calibration
screened-Poisson model
anisotropic
numerical simulation
Discontinuous Galerkin
brittle fracture
XFEM/GFEM
topological photonic crystal
photonic orbital angular momentum
conditioned sandy pebble
yielding region
finite element analysis
fluid-structure interaction
cracking risk
Mindlin
ABAQUS UEL
particle element model
HSDT
cell-based smoothed-finite element method (CS-FEM)
the Xulong arch dam
ISBN 3-03921-687-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367750103321
Rabczuk Timon  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Methods of Multi-Physics Problems
Computational Methods of Multi-Physics Problems
Autore Rabczuk Timon
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (128 p.)
Soggetto non controllato temperature variation
h-BN and Graphene sheets
molecular dynamics simulation
thermal conductance
mechanical
patch repair
first-principles
finite element method
Von Mises stress
composite
thermal
electrofusion socket joints
two-dimensional semiconductor
buried gas distribution pipes
level set technique
lithium-ion battery
phase field approach to fracture
meshless method
rock mechanics
fracture of geo-materials
flexoelectricity
pressure gradient effect
medium density polyethylene (MDPE)
high density polyethylene (HDPE)
size effect
fracture analysis
interface modeling
cohesive zone model
thermal conductivity
peridynamics
ISBN 3-03921-418-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367566803321
Rabczuk Timon  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning in Modeling and Simulation : Methods and Applications
Machine Learning in Modeling and Simulation : Methods and Applications
Autore Rabczuk Timon
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2023
Descrizione fisica 1 online resource (456 pages)
Disciplina 006.31
Altri autori (Persone) BatheKlaus-Jürgen
Collana Computational Methods in Engineering and the Sciences Series
ISBN 3-031-36644-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1 Machine Learning in Computer Aided Engineering -- 1.1 Introduction -- 1.2 Machine Learning Procedures Employed in CAE -- 1.2.1 Machine Learning Aspects and Classification of Procedures -- 1.2.2 Overview of Classical Machine Learning Procedures Used in CAE -- 1.3 Constraining to, and Incorporating Physics in, Data-Driven Methods -- 1.3.1 Incorporating Physics in, and Learning Physics From, the Dataset -- 1.3.2 Incorporating Physics in the Design of a ML Method -- 1.3.3 Data Assimilation and Correction Methods -- 1.3.4 ML Methods Designed to Learn Physics -- 1.4 Applications of Machine Learning in Computer Aided Engineering -- 1.4.1 Constitutive Modeling and Multiscale Applications -- 1.4.2 Fluid Mechanics Applications -- 1.4.3 Structural Mechanics Applications -- 1.4.4 Machine Learning Approaches Motivated in Structural Mechanics and by Finite Element Concepts -- 1.4.5 Multiphysics Problems -- 1.4.6 Machine Learning in Manufacturing and Design -- 1.5 Conclusions -- References -- 2 Artificial Neural Networks -- 2.1 Introduction -- 2.2 Biological Motivation and Pre-history -- 2.2.1 Memory -- 2.2.2 Learning -- 2.2.3 Parallel Distributed Processing Paradigm -- 2.2.4 The Artificial Neuron -- 2.2.5 The Perceptron -- 2.3 The First Age-The Multi-layer Perceptron -- 2.3.1 Existence of Solutions -- 2.3.2 Uniqueness of Solutions -- 2.3.3 Generalization and Regularization -- 2.3.4 Choice of Output Activations Functions -- 2.4 A First-Age Case Study: Structural Monitoring of an Aircraft Wing -- 2.5 The Second Age-Deep Learning -- 2.5.1 Convolutional Neural Networks (CNNs) -- 2.5.2 A Little More History -- 2.5.3 Other Recent Developments -- 2.6 Conclusions -- References -- 3 Gaussian Processes -- 3.1 Introduction -- 3.1.1 A Visual Introduction To Gaussian Processes -- 3.1.2 Gaussian Process Regression.
3.1.3 Implementation and Learning of the GP -- 3.2 Beyond the Gaussian Process -- 3.2.1 Large Training Data -- 3.2.2 Non-Gaussian Likelihoods -- 3.2.3 Multiple-Output GPs -- 3.3 A Case Study with Wind Turbine Power Curves -- 3.4 Conclusions -- References -- 4 Machine Learning Methods for Constructing Dynamic Models From Data -- 4.1 Introduction -- 4.2 Modeling Viewpoints -- 4.3 Learning Paradigms: Burgers' Equation -- 4.4 Dynamic Models From Data -- 4.4.1 Dynamic Mode Decomposition -- 4.4.2 Sparse Identification of Nonlinear Dynamics -- 4.4.3 Neural Networks -- 4.5 Joint Discovery of Coordinates and Models -- 4.6 Conclusions -- References -- 5 Physics-Informed Neural Networks: Theory and Applications -- 5.1 Introduction -- 5.2 Basics of Artificial Neural Networks -- 5.2.1 Feed-Forward Neural Networks -- 5.2.2 Activation Functions -- 5.2.3 Training -- 5.2.4 Testing and Validation -- 5.2.5 Optimizers -- 5.3 Physics-Informed Neural Networks -- 5.3.1 Collocation Method -- 5.3.2 Energy Minimization Method -- 5.4 Numerical Applications -- 5.4.1 Forward Problems -- 5.4.2 Inverse Problems -- 5.5 Conclusions -- References -- 6 Physics-Informed Deep Neural Operator Networks -- 6.1 Introduction -- 6.2 DeepONet and Its Extensions -- 6.2.1 Feature Expansion in DeepONet -- 6.2.2 Multiple Input DeepONet -- 6.2.3 Physics-Informed DeepONet -- 6.3 FNO and Its Extensions -- 6.3.1 Feature Expansion in FNO -- 6.3.2 Implicit FNO -- 6.3.3 Physics-Informed FNO -- 6.4 Graph Neural Operators -- 6.4.1 Graph Neural Networks -- 6.4.2 Integral Neural Operators Through Graph Kernel Learning -- 6.5 Neural Operator Theory -- 6.6 Applications -- 6.6.1 Data-Driven Neural Operators -- 6.6.2 Physics-Informed Neural Operators -- 6.7 Summary and Outlook -- References -- 7 Digital Twin for Dynamical Systems -- 7.1 Introduction -- 7.2 Building Blocks and Nominal Model in Digital Twin.
7.3 Physics-Based Digital Twin for SDOF System -- 7.3.1 Nominal Model -- 7.3.2 The Digital Twin Framework -- 7.3.3 Formulating the Digital Twin -- 7.3.4 Numerical Experiment -- 7.4 Physics ML Fusion: Towards a Predictive Digital Twin -- 7.4.1 Gaussian Process -- 7.4.2 Numerical Experiment -- 7.5 Digital Twin for Nonlinear Stochastic Dynamical Systems -- 7.5.1 Stochastic Nonlinear MDOF System: The Nominal Model -- 7.5.2 Problem Statement -- 7.5.3 The Digital Twin Framework -- 7.5.4 Numerical Examples -- 7.6 Digital Twin for Systems with Misspecified Physics -- 7.6.1 Model Updating Using Input-Output Measurement -- 7.6.2 Model Updating Using Output-Only Measurements -- 7.6.3 Sparse Bayesian Regression -- 7.6.4 Numerical Examples -- 7.7 Conclusions -- References -- 8 Reduced Order Modeling -- 8.1 Introduction -- 8.2 Proper Orthogonal Decomposition -- 8.2.1 Proper Orthogonal Decomposition Applied to Partial Differential Equations -- 8.2.2 Singular Value Decomposition -- 8.3 Reduced Order Modeling Using Proper Orthogonal Decomposition -- 8.3.1 Galerkin Projection -- 8.3.2 Hyperreduction -- 8.3.3 Stabilization Using Variational Multiscale Methods -- 8.4 Non-intrusive Reduced Order Models -- 8.4.1 The General Concept -- 8.4.2 Dynamic Mode Decomposition -- 8.5 Parametric Reduced Order Models -- 8.5.1 Global Basis -- 8.5.2 Local Basis with Interpolation -- 8.6 Machine Learning-Based Reduced Order Models -- 8.6.1 Nonlinear Dimension Reduction -- 8.6.2 Machine Learning Based Non-intrusive Reduced Order Models -- 8.6.3 Closure Modeling -- 8.6.4 Correction Based on Fine Solutions -- 8.6.5 Machine Learning Applied to Parametric Reduced Order Models -- 8.6.6 Physics Informed Machine Learning for Reduced Order Models -- 8.6.7 Reduced System Identification -- 8.7 Concluding Remarks -- References -- 9 Regression Models for Machine Learning -- 9.1 Introduction.
9.2 Parametric Regression: A Non-Bayesian Perspective -- 9.2.1 Least Square Regression -- 9.2.2 Support Vector Regression -- 9.2.3 Kernel Trick -- 9.3 Regression: A Bayesian Perspective -- 9.3.1 Gaussian Process Regression: A Parametric Space Perspective -- 9.3.2 Gaussian Process Regression: A Functional Space Perspective -- 9.4 Active Learning -- 9.4.1 Active Learning for Bayesian Cubature -- 9.4.2 Active Learning for Bayesian Reliability Assessment -- 9.5 Conclusions -- References -- 10 Overview on Machine Learning Assisted Topology Optimization Methodologies -- 10.1 Introduction -- 10.2 Background -- 10.2.1 Topology Optimization -- 10.2.2 Artificial Intelligence and Neural Networks -- 10.3 Literature Survey -- 10.3.1 Density-Based Methods -- 10.3.2 Image-Based Methods -- 10.4 Conclusions -- References -- 11 Mixed-Variable Concurrent Material, Geometry, and Process Design in Integrated Computational Materials Engineering -- 11.1 Introduction -- 11.2 Mixed-Variable and Constrained Bayesian Optimization -- 11.2.1 Gaussian Processes and Bayesian Optimization -- 11.2.2 Latent Variable Gaussian Process (LVGP) Modeling -- 11.2.3 Constrained Bayesian Optimization -- 11.3 Application to Concurrent Structure and Material Design -- 11.3.1 The Integrated Material-Structure Model -- 11.3.2 Design Variables, Constraints, and Objectives -- 11.3.3 LVGP Modeling and Validation -- 11.3.4 LVGP-CBO Setup and Design Results -- 11.4 Application to Concurrent Material and Process Design -- 11.4.1 The Integrated Process-Structure-Property Model -- 11.4.2 Design Variables, Constraints, and Objectives for SFRP Design -- 11.4.3 LVGP Modeling and Validation -- 11.4.4 LVGP-CBO Setup and Design Results -- 11.5 Conclusions -- References -- 12 Machine Learning Interatomic Potentials: Keys to First-Principles Multiscale Modeling -- 12.1 Introduction.
12.2 Methods for Exploring Interatomic Forces -- 12.2.1 Quantum Mechanics -- 12.2.2 Empirical Interatomic Potentials -- 12.2.3 Machine Learning Interatomic Potentials -- 12.3 Developing a Machine Learning Interatomic Potential -- 12.3.1 Popular Machine Learning Interatomic Potentials -- 12.3.2 Training of Machine Learning Interatomic Potentials -- 12.3.3 Passive or Active Fitting -- 12.3.4 Current Challenges of MLIPs -- 12.4 Quantum Mechanics and Empirical Interatomic Potentials Challenges -- 12.4.1 Thermal Transport -- 12.4.2 Mechanical Properties -- 12.5 First-Principles Multiscale Modeling -- 12.6 Concluding Remark -- References.
Record Nr. UNINA-9910746972203321
Rabczuk Timon  
Cham : , : Springer International Publishing AG, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui