top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dataset shift in machine learning / / [edited by] Joaquin Quinonero-Candela ... [et al.]
Dataset shift in machine learning / / [edited by] Joaquin Quinonero-Candela ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, c2009
Descrizione fisica 1 online resource (246 p.)
Disciplina 006.3/1
Altri autori (Persone) Quinonero-CandelaJoaquin
Collana Neural information processing series
Soggetto topico Machine learning
Machine learning - Mathematical models
ISBN 9780262292535
026229253X
9781282240384
1282240382
9780262255103
0262255103
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Series Foreword; Preface; I - Introduction to Dataset Shift; 1 - When Training and Test Sets Are Different: Characterizing Learning Transfer; 2 - Projection and Projectability; II - Theoretical Views on Dataset and Covariate Shift; 3 - Binary Classi cation under Sample Selection Bias; 4 - On Bayesian Transduction: Implications for the Covariate Shift Problem; 5 - On the Training/Test Distributions Gap: A Data Representation Learning Framework; III - Algorithms for Covariate Shift; 6 - Geometry of Covariate Shift with Applications to Active Learning
7 - A Conditional Expectation Approach to Model Selection and Active Learning under Covariate Shift 8 - Covariate Shift by Kernel Mean Matching; 9 - Discriminative Learning under Covariate Shift with a Single Optimization Problem; 10 - An Adversarial View of Covariate Shift and a Minimax Approach; IV - Discussion; 11 - Author Comments; References; Notation and Symbols; Contributors; Index
Record Nr. UNINA-9910954803903321
Cambridge, Mass., : MIT Press, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning Challenges [[electronic resource] ] : Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers / / edited by Joaquin Quinonero-Candela, Ido Dagan, Bernardo Magnini, Florence d'Alché-Buc
Machine Learning Challenges [[electronic resource] ] : Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers / / edited by Joaquin Quinonero-Candela, Ido Dagan, Bernardo Magnini, Florence d'Alché-Buc
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Descrizione fisica 1 online resource (XIII, 462 p.)
Disciplina 006.3/1
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Algorithms
Mathematical logic
Natural language processing (Computer science)
Optical data processing
Pattern recognition
Artificial Intelligence
Algorithm Analysis and Problem Complexity
Mathematical Logic and Formal Languages
Natural Language Processing (NLP)
Image Processing and Computer Vision
Pattern Recognition
ISBN 3-540-33428-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES – A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?.
Record Nr. UNISA-996466135103316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Machine learning challenges : evaluating predictive uncertainty visual object classification and recognizing textual entailment : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 : revised selected papers / / Joaquin Quinonero-Candela ... [et al.] (eds.)
Machine learning challenges : evaluating predictive uncertainty visual object classification and recognizing textual entailment : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 : revised selected papers / / Joaquin Quinonero-Candela ... [et al.] (eds.)
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2006
Descrizione fisica 1 online resource (XIII, 462 p.)
Disciplina 006.3/1
Altri autori (Persone) Quinonero-CandelaJoaquin
Collana Lecture notes in computer science. Lecture notes in artificial intelligence
Soggetto topico Machine learning
ISBN 3-540-33428-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES – A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?.
Altri titoli varianti First PASCAL Machine Learning Challenges Workshop
PASCAL Machine Learning Challenges Workshop
MLCW 2005
Record Nr. UNINA-9910484524603321
Berlin ; ; New York, : Springer, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui