Dataset shift in machine learning / / [edited by] Joaquin Quinonero-Candela ... [et al.] |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cambridge, Mass., : MIT Press, c2009 |
Descrizione fisica | 1 online resource (246 p.) |
Disciplina | 006.3/1 |
Altri autori (Persone) | Quinonero-CandelaJoaquin |
Collana | Neural information processing series |
Soggetto topico |
Machine learning
Machine learning - Mathematical models |
ISBN |
9780262292535
026229253X 9781282240384 1282240382 9780262255103 0262255103 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Series Foreword; Preface; I - Introduction to Dataset Shift; 1 - When Training and Test Sets Are Different: Characterizing Learning Transfer; 2 - Projection and Projectability; II - Theoretical Views on Dataset and Covariate Shift; 3 - Binary Classi cation under Sample Selection Bias; 4 - On Bayesian Transduction: Implications for the Covariate Shift Problem; 5 - On the Training/Test Distributions Gap: A Data Representation Learning Framework; III - Algorithms for Covariate Shift; 6 - Geometry of Covariate Shift with Applications to Active Learning
7 - A Conditional Expectation Approach to Model Selection and Active Learning under Covariate Shift 8 - Covariate Shift by Kernel Mean Matching; 9 - Discriminative Learning under Covariate Shift with a Single Optimization Problem; 10 - An Adversarial View of Covariate Shift and a Minimax Approach; IV - Discussion; 11 - Author Comments; References; Notation and Symbols; Contributors; Index |
Record Nr. | UNINA-9910954803903321 |
Cambridge, Mass., : MIT Press, c2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning Challenges [[electronic resource] ] : Evaluating Predictive Uncertainty, Visual Object Classification, and Recognizing Textual Entailment, First Pascal Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers / / edited by Joaquin Quinonero-Candela, Ido Dagan, Bernardo Magnini, Florence d'Alché-Buc |
Edizione | [1st ed. 2006.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006 |
Descrizione fisica | 1 online resource (XIII, 462 p.) |
Disciplina | 006.3/1 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Algorithms Mathematical logic Natural language processing (Computer science) Optical data processing Pattern recognition Artificial Intelligence Algorithm Analysis and Problem Complexity Mathematical Logic and Formal Languages Natural Language Processing (NLP) Image Processing and Computer Vision Pattern Recognition |
ISBN | 3-540-33428-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES – A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?. |
Record Nr. | UNISA-996466135103316 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine learning challenges : evaluating predictive uncertainty visual object classification and recognizing textual entailment : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 : revised selected papers / / Joaquin Quinonero-Candela ... [et al.] (eds.) |
Edizione | [1st ed. 2006.] |
Pubbl/distr/stampa | Berlin ; ; New York, : Springer, c2006 |
Descrizione fisica | 1 online resource (XIII, 462 p.) |
Disciplina | 006.3/1 |
Altri autori (Persone) | Quinonero-CandelaJoaquin |
Collana | Lecture notes in computer science. Lecture notes in artificial intelligence |
Soggetto topico | Machine learning |
ISBN | 3-540-33428-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES – A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?. |
Altri titoli varianti |
First PASCAL Machine Learning Challenges Workshop
PASCAL Machine Learning Challenges Workshop MLCW 2005 |
Record Nr. | UNINA-9910484524603321 |
Berlin ; ; New York, : Springer, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|