Differential geometry and lie groups : a second course / / Jean Gallier, Jocelyn Quaintance
| Differential geometry and lie groups : a second course / / Jean Gallier, Jocelyn Quaintance |
| Autore | Gallier Jean H. |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
| Descrizione fisica | 1 online resource (XIV, 620 p. 110 illus., 32 illus. in color.) |
| Disciplina | 516.36 |
| Collana | Geometry and computing |
| Soggetto topico |
Geometry, Differential
Topological groups |
| ISBN | 3-030-46047-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Tensor Algebras -- 2. Exterior Tensor Powers and Exterior Algebras -- 3. Differential Forms -- 4. Distributions and the Frobenius Theorem -- 5. Integration on Manifolds -- 6. Spherical Harmonics and Linear Representations -- 7. Operators on Riemannian Manifolds -- 8. Bundles, Metrics on Bundles, Homogeneous Spaces -- 9. Connections and Curvature in Vector Bundles -- 10. Clifford Algebras, Clifford Groups, Pin and Spin. |
| Record Nr. | UNINA-9910483832803321 |
Gallier Jean H.
|
||
| Cham, Switzerland : , : Springer, , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Differential geometry and lie groups : a second course / / Jean Gallier, Jocelyn Quaintance
| Differential geometry and lie groups : a second course / / Jean Gallier, Jocelyn Quaintance |
| Autore | Gallier Jean H. |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
| Descrizione fisica | 1 online resource (XIV, 620 p. 110 illus., 32 illus. in color.) |
| Disciplina | 516.36 |
| Collana | Geometry and computing |
| Soggetto topico |
Geometry, Differential
Topological groups |
| ISBN | 3-030-46047-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Tensor Algebras -- 2. Exterior Tensor Powers and Exterior Algebras -- 3. Differential Forms -- 4. Distributions and the Frobenius Theorem -- 5. Integration on Manifolds -- 6. Spherical Harmonics and Linear Representations -- 7. Operators on Riemannian Manifolds -- 8. Bundles, Metrics on Bundles, Homogeneous Spaces -- 9. Connections and Curvature in Vector Bundles -- 10. Clifford Algebras, Clifford Groups, Pin and Spin. |
| Record Nr. | UNISA-996418268503316 |
Gallier Jean H.
|
||
| Cham, Switzerland : , : Springer, , [2020] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Differential Geometry and Lie Groups [[electronic resource] ] : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance
| Differential Geometry and Lie Groups [[electronic resource] ] : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance |
| Autore | Gallier Jean |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XV, 777 p. 33 illus., 32 illus. in color.) |
| Disciplina | 516.36 |
| Collana | Geometry and Computing |
| Soggetto topico |
Differential geometry
Topological groups Lie groups Computer mathematics Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis |
| ISBN | 3-030-46040-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. The Matrix Exponential; Some Matrix Lie Groups -- 2. Adjoint Representations and the Derivative of exp -- 3. Introduction to Manifolds and Lie Groups -- 4. Groups and Group Actions -- 5. The Lorentz Groups ⊛ -- 6. The Structure of O(p,q) and SO(p, q) -- 7. Manifolds, Tangent Spaces, Cotangent Spaces -- 8. Construction of Manifolds From Gluing Data ⊛ -- 9. Vector Fields, Integral Curves, Flows -- 10. Partitions of Unity, Covering Maps ⊛ -- 11. Basic Analysis: Review of Series and Derivatives -- 12. A Review of Point Set Topology.-13. Riemannian Metrics, Riemannian Manifolds -- 14. Connections on Manifolds -- 15. Geodesics on Riemannian Manifolds -- 16. Curvature in Riemannian Manifolds -- 17. Isometries, Submersions, Killing Vector Fields -- 18. Lie Groups, Lie Algebra, Exponential Map -- 19. The Derivative of exp and Dynkin's Formula ⊛ -- 20. Metrics, Connections, and Curvature of Lie Groups -- 21. The Log-Euclidean Framework -- 22. Manifolds Arising from Group Actions. |
| Record Nr. | UNISA-996418267903316 |
Gallier Jean
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Differential Geometry and Lie Groups : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance
| Differential Geometry and Lie Groups : A Computational Perspective / / by Jean Gallier, Jocelyn Quaintance |
| Autore | Gallier Jean |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XV, 777 p. 33 illus., 32 illus. in color.) |
| Disciplina | 516.36 |
| Collana | Geometry and Computing |
| Soggetto topico |
Differential geometry
Topological groups Lie groups Computer mathematics Differential Geometry Topological Groups, Lie Groups Computational Mathematics and Numerical Analysis |
| ISBN | 3-030-46040-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. The Matrix Exponential; Some Matrix Lie Groups -- 2. Adjoint Representations and the Derivative of exp -- 3. Introduction to Manifolds and Lie Groups -- 4. Groups and Group Actions -- 5. The Lorentz Groups ⊛ -- 6. The Structure of O(p,q) and SO(p, q) -- 7. Manifolds, Tangent Spaces, Cotangent Spaces -- 8. Construction of Manifolds From Gluing Data ⊛ -- 9. Vector Fields, Integral Curves, Flows -- 10. Partitions of Unity, Covering Maps ⊛ -- 11. Basic Analysis: Review of Series and Derivatives -- 12. A Review of Point Set Topology.-13. Riemannian Metrics, Riemannian Manifolds -- 14. Connections on Manifolds -- 15. Geodesics on Riemannian Manifolds -- 16. Curvature in Riemannian Manifolds -- 17. Isometries, Submersions, Killing Vector Fields -- 18. Lie Groups, Lie Algebra, Exponential Map -- 19. The Derivative of exp and Dynkin's Formula ⊛ -- 20. Metrics, Connections, and Curvature of Lie Groups -- 21. The Log-Euclidean Framework -- 22. Manifolds Arising from Group Actions. |
| Record Nr. | UNINA-9910483831003321 |
Gallier Jean
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||