top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Image processing and jump regression analysis [[electronic resource] /] / Peihua Qiu
Image processing and jump regression analysis [[electronic resource] /] / Peihua Qiu
Autore Qiu Peihua <1965->
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2005
Descrizione fisica 1 online resource (340 p.)
Disciplina 006.3/7
Collana Wiley series in probability and statistics
Soggetto topico Image processing
Regression analysis
ISBN 1-280-27685-1
9786610276851
0-470-35686-3
0-471-73315-6
0-471-73316-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Image Processing and Jump Regression Analysis; Contents; List of Figures; List of Tables; Preface; 1 Introduction; 1.1 Images and image representation; 1.1 A conventional coordinate system for expressing an image in industry.; 1.2 Regression curves and sugaces with jumps; 1.2 A log-transformed C-band, HH-polarization, synthetic aperture radar image of an area near Thetford forest, England.; 1.3 December sea-level pressures observed by a Bombay weather station in India during 1921-1992.; 1.3 Edge detection, image restoration, and jump regression analysis
1.4 Statistical process control and some other related topics1.5 Organization of the book; Problems; 2 Basic Statistical Concepts and Conventional Smoothing Techniques; 2.1 Introduction; 2.2 Some basic statistical concepts and terminologies; 2.2.1 Populations, samples, and distributions; 2.1 Probability density curve of the standard normal distribution.; 2.2.2 Point estimation of population parameters; 2.2.3 Confidence intervals and hypothesis testing; 2.2.4 Maximum likelihood estimation and least squares estimation; 2.3 Nadaraya- Watson and other kernel smoothing techniques
2.3.1 Univariate kernel estimators2.3.2 Some statistical properties of kernel estimators; 2.3.3 Multivariate kernel estimators; 2.4 Local polynomial kernel smoothing techniques; 2.4.1 Univariate local polynomial kernel estimators; 2.4.2 Some statistical properties; 2.2 The Nadaraya-Watson (NW) kernel estimator and the local linear kernel (LK) estimator.; 2.3 Behavior of the Nadaraya-Watson (NW) kernel estimator [plot (a)] and the local linear (LK) kernel estimator [plot (b)] of; 2.4.3 Multivariate local polynomial kernel estimators
2.4 Behavior of the Nadaraya- Watson (NW) kernel estimator [plot (a)] and the local linear kernel (LK) estimator [plot (b)] o2.4.4 Bandwidth selection; 2.5 Spline smoothing procedures; 2.5.1 Univariate smoothing spline estimation; 2.5.2 Selection of the smoothing parameter; 2.5.3 Multivariate smoothing spline estimation; 2.5.4 Regression spline estimation; 2.5 Four B-splines when ti, tj+1,tj+2, tj+3, and tj+4 are 0, 0.25, 0.5, 0.75, and 1.0.; 2.6 Wavelet transformation methods; 2.6.1 Function estimation based on Fourier transformation; 2.6.2 Univariate wavelet transformations
2.6 The Haar father wavelet, the Haar mother wavelet, the Haar wavelet function y1,0, and the Haar wavelet function y1,1.2.6.3 Bivariate wavelet transformations; Problems; 2.7 When f(x) and y(x) are the Haar father and mother wavelets, the two-dimensional wavelet functions F(x, y), Y(1)(x, y), Y(2)(x, y), and Y(3)(x, y) are displayed.; 3 Estimation of Jump Regression Curves; 3.1 Introduction; 3.2 Jump detection when the number of jumps is known; 3.2.1 Difference kernel estimation procedures
3.1 The true regression function f and the jump detection criterion MDKE dejined by expression (3.2) when c = 0,n = 100, and hn = 0.1.
Record Nr. UNINA-9910143574403321
Qiu Peihua <1965->  
Hoboken, N.J., : John Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Image processing and jump regression analysis / / Peihua Qiu
Image processing and jump regression analysis / / Peihua Qiu
Autore Qiu Peihua <1965->
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley, c2005
Descrizione fisica 1 online resource (340 p.)
Disciplina 006.3/7
Collana Wiley series in probability and statistics
Soggetto topico Image processing
Regression analysis
ISBN 9786610276851
9781280276859
1280276851
9780470356869
0470356863
9780471733157
0471733156
9780471733164
0471733164
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Image Processing and Jump Regression Analysis; Contents; List of Figures; List of Tables; Preface; 1 Introduction; 1.1 Images and image representation; 1.1 A conventional coordinate system for expressing an image in industry.; 1.2 Regression curves and sugaces with jumps; 1.2 A log-transformed C-band, HH-polarization, synthetic aperture radar image of an area near Thetford forest, England.; 1.3 December sea-level pressures observed by a Bombay weather station in India during 1921-1992.; 1.3 Edge detection, image restoration, and jump regression analysis
1.4 Statistical process control and some other related topics1.5 Organization of the book; Problems; 2 Basic Statistical Concepts and Conventional Smoothing Techniques; 2.1 Introduction; 2.2 Some basic statistical concepts and terminologies; 2.2.1 Populations, samples, and distributions; 2.1 Probability density curve of the standard normal distribution.; 2.2.2 Point estimation of population parameters; 2.2.3 Confidence intervals and hypothesis testing; 2.2.4 Maximum likelihood estimation and least squares estimation; 2.3 Nadaraya- Watson and other kernel smoothing techniques
2.3.1 Univariate kernel estimators2.3.2 Some statistical properties of kernel estimators; 2.3.3 Multivariate kernel estimators; 2.4 Local polynomial kernel smoothing techniques; 2.4.1 Univariate local polynomial kernel estimators; 2.4.2 Some statistical properties; 2.2 The Nadaraya-Watson (NW) kernel estimator and the local linear kernel (LK) estimator.; 2.3 Behavior of the Nadaraya-Watson (NW) kernel estimator [plot (a)] and the local linear (LK) kernel estimator [plot (b)] of; 2.4.3 Multivariate local polynomial kernel estimators
2.4 Behavior of the Nadaraya- Watson (NW) kernel estimator [plot (a)] and the local linear kernel (LK) estimator [plot (b)] o2.4.4 Bandwidth selection; 2.5 Spline smoothing procedures; 2.5.1 Univariate smoothing spline estimation; 2.5.2 Selection of the smoothing parameter; 2.5.3 Multivariate smoothing spline estimation; 2.5.4 Regression spline estimation; 2.5 Four B-splines when ti, tj+1,tj+2, tj+3, and tj+4 are 0, 0.25, 0.5, 0.75, and 1.0.; 2.6 Wavelet transformation methods; 2.6.1 Function estimation based on Fourier transformation; 2.6.2 Univariate wavelet transformations
2.6 The Haar father wavelet, the Haar mother wavelet, the Haar wavelet function y1,0, and the Haar wavelet function y1,1.2.6.3 Bivariate wavelet transformations; Problems; 2.7 When f(x) and y(x) are the Haar father and mother wavelets, the two-dimensional wavelet functions F(x, y), Y(1)(x, y), Y(2)(x, y), and Y(3)(x, y) are displayed.; 3 Estimation of Jump Regression Curves; 3.1 Introduction; 3.2 Jump detection when the number of jumps is known; 3.2.1 Difference kernel estimation procedures
3.1 The true regression function f and the jump detection criterion MDKE dejined by expression (3.2) when c = 0,n = 100, and hn = 0.1.
Record Nr. UNINA-9910823948103321
Qiu Peihua <1965->  
Hoboken, N.J., : John Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui