top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Mathematics Modeling in Cancer Analysis : Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / Wenjian Qin [and five others] editors
Computational Mathematics Modeling in Cancer Analysis : Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / Wenjian Qin [and five others] editors
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (182 pages)
Disciplina 616.9940754
Collana Lecture Notes in Computer Science Series
Soggetto topico Cancer - Imaging
ISBN 3-031-45087-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996558470703316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Mathematics Modeling in Cancer Analysis : Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / Wenjian Qin [and five others] editors
Computational Mathematics Modeling in Cancer Analysis : Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings / / Wenjian Qin [and five others] editors
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (182 pages)
Disciplina 616.9940754
Collana Lecture Notes in Computer Science Series
Soggetto topico Cancer - Imaging
ISBN 3-031-45087-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910747598603321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational mathematics modeling in cancer analysis : irst international workshop, CMMCA 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, proceedings / / edited by Wenjian Qin [and three others]
Computational mathematics modeling in cancer analysis : irst international workshop, CMMCA 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, proceedings / / edited by Wenjian Qin [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (171 pages)
Disciplina 636.80896994
Collana Lecture Notes in Computer Science Ser.
Soggetto topico Cancer - Imaging
ISBN 3-031-17266-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996490353903316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Computational Mathematics Modeling in Cancer Analysis : First International Workshop, CMMCA 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Wenjian Qin, Nazar Zaki, Fa Zhang, Jia Wu, Fan Yang
Computational Mathematics Modeling in Cancer Analysis : First International Workshop, CMMCA 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings / / edited by Wenjian Qin, Nazar Zaki, Fa Zhang, Jia Wu, Fan Yang
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (171 pages)
Disciplina 636.80896994
616.99400113
Collana Lecture Notes in Computer Science
Soggetto topico Image processing - Digital techniques
Computer vision
Computer engineering
Computer networks
Machine learning
Computers
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Engineering and Networks
Machine Learning
Computing Milieux
Càncer
Diagnòstic per la imatge
Models matemàtics
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 9783031172663
3031172663
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma -- Is More Always Better? Effects of Patch Sampling in Distinguishing Chronic Lymphocytic Leukemia from Transformation to Diffuse Large B-cell Lymphoma -- Repeatability of Radiomic Features against Simulated Scanning Position Stochasticity across Imaging Modalities and Cancer Subtypes: A Retrospective Multi-Institutional Study on Head-and-Neck Cases -- MLCN: Metric Learning Constrained Network for Whole Slide Image Classification with Bilinear Gated Attention Mechanism -- NucDETR: End-to-End Transformer for Nucleus Detection in Histopathology Images -- Self-supervised learning based on a pre-trained method for the subtype classification of spinal tumors -- CanDLE: Illuminating Biases in Transcriptomic Pan-Cancer Diagnosis -- Cross-Stream Interactions: Segmentation of Lung Adenocarcinoma Growth Patterns -- Modality-collaborative AI model Ensemble for Lung Cancer Early Diagnosis -- Clustering-based Multi-instance Learning Network for Whole Slide Image Classification -- Multi-task Learning-driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification -- Light Annotation Fine Segmentation: Histology Image Segmentation based on VGG Fusion with Global Normalisation CAM -- Tubular Structure-Aware Convolutional Neural Networks for Organ at Risks Segmentation in Cervical Cancer Radiotherapy -- Automatic Computer-aided Histopathologic Segmentation for Nasopharyngeal Carcinoma using Transformer Framework -- Accurate Breast Tumor Identification UsingComputational Ultrasound Image Features.
Record Nr. UNINA-9910595023903321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui