top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Accelerator-Driven System at Kyoto University Critical Assembly
Accelerator-Driven System at Kyoto University Critical Assembly
Autore Pyeon Cheol Ho
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (353 pages)
Soggetto topico Atomic & molecular physics
Nuclear power & engineering
Spectrum analysis, spectrochemistry, mass spectrometry
Particle & high-energy physics
Soggetto non controllato Nuclear Physics, Heavy Ions, Hadrons
Nuclear Energy
Nuclear Chemistry
Particle Acceleration and Detection, Beam Physics
Nuclear Physics
Accelerator Physics
Open Access
Reactor Physics Experiments
ADS
KUCA
Subcriticality Measurement
Kinetics Parameter Estimation in Subcritical State
Nuclear Transmutation
Uncertainty Quantification
Atomic & molecular physics
Nuclear power & engineering
Nuclear chemistry, photochemistry & radiation
Particle & high-energy physics
ISBN 981-16-0344-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Introduction -- 1.1 Kyoto University Critical Assembly -- 1.1.1 KUCA Facility -- 1.1.2 Solid-Moderated and Solid-Reflected Cores -- 1.1.3 Light-Water-Moderated and Light-Water-Reflected Core -- 1.1.4 Pulsed-Neutron Generator -- 1.1.5 Fixed-Field Alternating Gradient Accelerator -- 1.2 Accelerator-Driven System -- 1.2.1 Overview of Research and Development -- 1.2.2 Feasibility Study at KUCA -- References -- 2 Subcriticality -- 2.1 Feynman-α and Rossi-α Analyses -- 2.1.1 Experimental Settings -- 2.1.2 Formulae for Data Analyses -- 2.1.3 Results and Discussion -- 2.2 Power Spectral Analyses -- 2.2.1 Experimental Settings -- 2.2.2 Formula for Power Spectral Analyses -- 2.2.3 Results and Discussion -- 2.3 Beam Trip and Restart Methods -- 2.3.1 Experimental Settings -- 2.3.2 Data Analyses Method -- 2.3.3 Results and Discussion -- 2.4 Conclusion -- References -- 3 Reactor Kinetics -- 3.1 α-Fitting Method -- 3.1.1 Experimental Settings -- 3.1.2 Numerical Simulations -- 3.1.3 Results and Discussion -- 3.2 Pulsed-Neutron Source Method -- 3.2.1 Experimental Settings -- 3.2.2 Results and Discussion -- 3.3 Inverse Kinetic Method -- 3.3.1 Theoretical Background -- 3.3.2 Experimental Settings -- 3.3.3 Transient Analyses -- 3.4 Conclusion -- References -- 4 Effective Delayed Neutron Fraction -- 4.1 Dependency of External Neutron Source -- 4.1.1 Experimental Settings -- 4.1.2 Numerical Simulations -- 4.1.3 k-Ratio Method -- 4.2 Measurement -- 4.2.1 Nelson Number Method -- 4.2.2 Experimental Settings -- 4.2.3 Results and Discussion -- 4.3 Evaluation of βeff/Λ -- 4.3.1 Experimental Settings -- 4.3.2 Kinetics Parameters -- 4.3.3 Results and Discussion -- 4.4 Neutron Generation Time -- 4.4.1 Experimental Settings -- 4.4.2 Results and Discussion -- 4.5 Conclusion -- References -- 5 Neutron Spectrum.
5.1 Subcritical Multiplication Factor -- 5.1.1 Theoretical Background -- 5.1.2 Characteristics of the Target -- 5.1.3 Effects of Neutron Spectrum -- 5.2 Threshold Energy Reactions -- 5.2.1 Foil Activation Method -- 5.2.2 Activation Foils -- 5.3 Spectrum Index -- 5.3.1 Cd Ratio -- 5.3.2 In Ratio -- 5.4 Spallation Neutrons -- 5.4.1 Neutron Spectrum Analyses -- 5.4.2 Reaction Rates -- 5.5 Conclusion -- References -- 6 Nuclear Transmutation of Minor Actinide -- 6.1 Integral Experiments at Critical State -- 6.1.1 Critical Irradiation Experiments -- 6.1.2 Experimental Analyses -- 6.1.3 Discussion -- 6.2 ADS Irradiation at Subcritical State -- 6.2.1 Experimental Settings -- 6.2.2 Demonstration of Nuclear Transmutation -- 6.3 Conclusion -- References -- 7 Neutronics of Lead and Bismuth -- 7.1 Sample Reactivity Worth Experiments -- 7.1.1 Core Configuration -- 7.1.2 Experimental Settings -- 7.2 Monte Carlo Analyses -- 7.2.1 Evaluation Method -- 7.2.2 Lead Sample Reactivity Worth -- 7.2.3 Bismuth Sample Reactivity Worth -- 7.3 Sensitivity Coefficients -- 7.3.1 Theoretical Background -- 7.3.2 Lead Isotopes -- 7.3.3 Bismuth Isotope -- 7.4 Uncertainty Quantification -- 7.4.1 Theoretical Background -- 7.4.2 Lead Isotopes -- 7.4.3 Bismuth Isotope -- 7.5 Conclusion -- References -- 8 Sensitivity and Uncertainty of Criticality -- 8.1 Experimental Settings -- 8.1.1 Core Configuration -- 8.1.2 Reactivity Measurements -- 8.2 Criticality -- 8.2.1 Numerical Simulations -- 8.2.2 Sensitivity and Uncertainty -- 8.2.3 Results and Discussion -- 8.3 Benchmarks -- 8.3.1 Experimental Analyses -- 8.3.2 Uncertainty -- 8.4 Conclusion -- References -- Appendix A1: Experimental Benchmarks on ADS at Kyoto University Critical Assembly -- A1.1 Experimental Settings of ADS Benchmarks -- A1.1.1 Core Components -- A1.1.2 Atomic Number Density of Core Elements -- References.
Appendix A2: 235U-Fueled and Pb-Bi-Zoned ADS Core -- A2.1 Pb-Bi Target -- A2.1.1 Core Configurations -- A2.1.2 Results of Experiments -- A2.1.2.1 Reaction Rate Distribution -- A2.1.2.2 PNS and Feynman-α Methods -- A2.2 Subcriticality Measurements -- A2.2.1 Core Configurations -- A2.2.2 Results of Experiments -- A2.2.3 PNS and Feynman-α Methods -- A2.3 Reaction Rates -- A2.3.1 Core Configurations -- A2.3.2 Reaction Rate Distributions -- A2.3.3 Reaction Rates of Activation Foils -- References -- Appendix A3: 235U-Fueled and Pb-Zoned ADS Core -- A3.1 Core Configurations -- A3.1.1 ADS with 14 MeV Neutrons -- A3.1.2 ADS with 100 MeV Protons -- A3.2 Kinetics Parameters -- A3.2.1 ADS with 14 MeV Neutrons -- A3.2.1.1 Core Condition at Critical State -- A3.2.1.2 Case D1 (4560 HEU Plates) -- A3.2.1.3 Case D2 (4400 HEU Plates) -- A3.2.1.4 Case D3 (4320 HEU Plates) -- A3.2.1.5 Case D4 (4200 HEU Plates) -- A3.2.1.6 Case D5 (4080 HEU Plates) -- A3.2.1.7 Case D6 (3840 HEU Plates) -- A3.2.2 ADS with 100 MeV Protons -- A3.2.2.1 Core Condition at Critical State -- A3.2.2.2 Case F1 (4560 HEU Plates) -- A3.2.2.3 Case F2 (4440 HEU Plates) -- A3.2.2.4 Case F3 (4320 HEU Plates) -- A3.2.2.5 Case F4 (4200 HEU Plates) -- A3.2.2.6 Case F5 (4080 HEU Plates) -- A3.2.2.7 Case F6 (3960 HEU Plates) -- A3.2.2.8 Case F7 (3840 HEU Plates) -- A3.3 Reaction Rates -- A3.3.1 Core Configurations -- A3.3.2 Reaction Rate Distribution -- References -- Appendix A4: 235U-Fueled ADS Core in Medium-Fast Spectrum -- A4.1 Core Configurations -- A4.1.1 ADS with 14 MeV Neutrons -- A4.1.2 ADS with 100 MeV Protons -- A4.2 Results of Experiments -- A4.2.1 Criticality and Control Rod Worth -- A4.2.2 PNS and Feynman-α Methods -- A4.3 Kinetic Parameters -- A4.3.1 ADS with 14 MeV Neutrons -- A4.3.2 ADS with 100 MeV Protons -- A4.4 Reaction Rates -- A4.4.1 Core Configurations.
A4.4.2 Reaction Rate Distributions -- A4.4.3 Reaction Rates of Activation Foils -- References -- Appendix A5: 232Th-Fueled ADS Core -- A5.1 Core Configurations -- A5.2 Results of Experiments -- A5.2.1 Reaction Rate Distributions -- A5.2.2 PNS and Feynman-α Methods -- References.
Record Nr. UNINA-9910473449803321
Pyeon Cheol Ho  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Accelerator-Driven System at Kyoto University Critical Assembly
Accelerator-Driven System at Kyoto University Critical Assembly
Autore Pyeon Cheol Ho
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (353 pages)
Soggetto topico Atomic & molecular physics
Nuclear power & engineering
Spectrum analysis, spectrochemistry, mass spectrometry
Particle & high-energy physics
Soggetto non controllato Nuclear Physics, Heavy Ions, Hadrons
Nuclear Energy
Nuclear Chemistry
Particle Acceleration and Detection, Beam Physics
Nuclear Physics
Accelerator Physics
Open Access
Reactor Physics Experiments
ADS
KUCA
Subcriticality Measurement
Kinetics Parameter Estimation in Subcritical State
Nuclear Transmutation
Uncertainty Quantification
Atomic & molecular physics
Nuclear power & engineering
Nuclear chemistry, photochemistry & radiation
Particle & high-energy physics
ISBN 981-16-0344-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Introduction -- 1.1 Kyoto University Critical Assembly -- 1.1.1 KUCA Facility -- 1.1.2 Solid-Moderated and Solid-Reflected Cores -- 1.1.3 Light-Water-Moderated and Light-Water-Reflected Core -- 1.1.4 Pulsed-Neutron Generator -- 1.1.5 Fixed-Field Alternating Gradient Accelerator -- 1.2 Accelerator-Driven System -- 1.2.1 Overview of Research and Development -- 1.2.2 Feasibility Study at KUCA -- References -- 2 Subcriticality -- 2.1 Feynman-α and Rossi-α Analyses -- 2.1.1 Experimental Settings -- 2.1.2 Formulae for Data Analyses -- 2.1.3 Results and Discussion -- 2.2 Power Spectral Analyses -- 2.2.1 Experimental Settings -- 2.2.2 Formula for Power Spectral Analyses -- 2.2.3 Results and Discussion -- 2.3 Beam Trip and Restart Methods -- 2.3.1 Experimental Settings -- 2.3.2 Data Analyses Method -- 2.3.3 Results and Discussion -- 2.4 Conclusion -- References -- 3 Reactor Kinetics -- 3.1 α-Fitting Method -- 3.1.1 Experimental Settings -- 3.1.2 Numerical Simulations -- 3.1.3 Results and Discussion -- 3.2 Pulsed-Neutron Source Method -- 3.2.1 Experimental Settings -- 3.2.2 Results and Discussion -- 3.3 Inverse Kinetic Method -- 3.3.1 Theoretical Background -- 3.3.2 Experimental Settings -- 3.3.3 Transient Analyses -- 3.4 Conclusion -- References -- 4 Effective Delayed Neutron Fraction -- 4.1 Dependency of External Neutron Source -- 4.1.1 Experimental Settings -- 4.1.2 Numerical Simulations -- 4.1.3 k-Ratio Method -- 4.2 Measurement -- 4.2.1 Nelson Number Method -- 4.2.2 Experimental Settings -- 4.2.3 Results and Discussion -- 4.3 Evaluation of βeff/Λ -- 4.3.1 Experimental Settings -- 4.3.2 Kinetics Parameters -- 4.3.3 Results and Discussion -- 4.4 Neutron Generation Time -- 4.4.1 Experimental Settings -- 4.4.2 Results and Discussion -- 4.5 Conclusion -- References -- 5 Neutron Spectrum.
5.1 Subcritical Multiplication Factor -- 5.1.1 Theoretical Background -- 5.1.2 Characteristics of the Target -- 5.1.3 Effects of Neutron Spectrum -- 5.2 Threshold Energy Reactions -- 5.2.1 Foil Activation Method -- 5.2.2 Activation Foils -- 5.3 Spectrum Index -- 5.3.1 Cd Ratio -- 5.3.2 In Ratio -- 5.4 Spallation Neutrons -- 5.4.1 Neutron Spectrum Analyses -- 5.4.2 Reaction Rates -- 5.5 Conclusion -- References -- 6 Nuclear Transmutation of Minor Actinide -- 6.1 Integral Experiments at Critical State -- 6.1.1 Critical Irradiation Experiments -- 6.1.2 Experimental Analyses -- 6.1.3 Discussion -- 6.2 ADS Irradiation at Subcritical State -- 6.2.1 Experimental Settings -- 6.2.2 Demonstration of Nuclear Transmutation -- 6.3 Conclusion -- References -- 7 Neutronics of Lead and Bismuth -- 7.1 Sample Reactivity Worth Experiments -- 7.1.1 Core Configuration -- 7.1.2 Experimental Settings -- 7.2 Monte Carlo Analyses -- 7.2.1 Evaluation Method -- 7.2.2 Lead Sample Reactivity Worth -- 7.2.3 Bismuth Sample Reactivity Worth -- 7.3 Sensitivity Coefficients -- 7.3.1 Theoretical Background -- 7.3.2 Lead Isotopes -- 7.3.3 Bismuth Isotope -- 7.4 Uncertainty Quantification -- 7.4.1 Theoretical Background -- 7.4.2 Lead Isotopes -- 7.4.3 Bismuth Isotope -- 7.5 Conclusion -- References -- 8 Sensitivity and Uncertainty of Criticality -- 8.1 Experimental Settings -- 8.1.1 Core Configuration -- 8.1.2 Reactivity Measurements -- 8.2 Criticality -- 8.2.1 Numerical Simulations -- 8.2.2 Sensitivity and Uncertainty -- 8.2.3 Results and Discussion -- 8.3 Benchmarks -- 8.3.1 Experimental Analyses -- 8.3.2 Uncertainty -- 8.4 Conclusion -- References -- Appendix A1: Experimental Benchmarks on ADS at Kyoto University Critical Assembly -- A1.1 Experimental Settings of ADS Benchmarks -- A1.1.1 Core Components -- A1.1.2 Atomic Number Density of Core Elements -- References.
Appendix A2: 235U-Fueled and Pb-Bi-Zoned ADS Core -- A2.1 Pb-Bi Target -- A2.1.1 Core Configurations -- A2.1.2 Results of Experiments -- A2.1.2.1 Reaction Rate Distribution -- A2.1.2.2 PNS and Feynman-α Methods -- A2.2 Subcriticality Measurements -- A2.2.1 Core Configurations -- A2.2.2 Results of Experiments -- A2.2.3 PNS and Feynman-α Methods -- A2.3 Reaction Rates -- A2.3.1 Core Configurations -- A2.3.2 Reaction Rate Distributions -- A2.3.3 Reaction Rates of Activation Foils -- References -- Appendix A3: 235U-Fueled and Pb-Zoned ADS Core -- A3.1 Core Configurations -- A3.1.1 ADS with 14 MeV Neutrons -- A3.1.2 ADS with 100 MeV Protons -- A3.2 Kinetics Parameters -- A3.2.1 ADS with 14 MeV Neutrons -- A3.2.1.1 Core Condition at Critical State -- A3.2.1.2 Case D1 (4560 HEU Plates) -- A3.2.1.3 Case D2 (4400 HEU Plates) -- A3.2.1.4 Case D3 (4320 HEU Plates) -- A3.2.1.5 Case D4 (4200 HEU Plates) -- A3.2.1.6 Case D5 (4080 HEU Plates) -- A3.2.1.7 Case D6 (3840 HEU Plates) -- A3.2.2 ADS with 100 MeV Protons -- A3.2.2.1 Core Condition at Critical State -- A3.2.2.2 Case F1 (4560 HEU Plates) -- A3.2.2.3 Case F2 (4440 HEU Plates) -- A3.2.2.4 Case F3 (4320 HEU Plates) -- A3.2.2.5 Case F4 (4200 HEU Plates) -- A3.2.2.6 Case F5 (4080 HEU Plates) -- A3.2.2.7 Case F6 (3960 HEU Plates) -- A3.2.2.8 Case F7 (3840 HEU Plates) -- A3.3 Reaction Rates -- A3.3.1 Core Configurations -- A3.3.2 Reaction Rate Distribution -- References -- Appendix A4: 235U-Fueled ADS Core in Medium-Fast Spectrum -- A4.1 Core Configurations -- A4.1.1 ADS with 14 MeV Neutrons -- A4.1.2 ADS with 100 MeV Protons -- A4.2 Results of Experiments -- A4.2.1 Criticality and Control Rod Worth -- A4.2.2 PNS and Feynman-α Methods -- A4.3 Kinetic Parameters -- A4.3.1 ADS with 14 MeV Neutrons -- A4.3.2 ADS with 100 MeV Protons -- A4.4 Reaction Rates -- A4.4.1 Core Configurations.
A4.4.2 Reaction Rate Distributions -- A4.4.3 Reaction Rates of Activation Foils -- References -- Appendix A5: 232Th-Fueled ADS Core -- A5.1 Core Configurations -- A5.2 Results of Experiments -- A5.2.1 Reaction Rate Distributions -- A5.2.2 PNS and Feynman-α Methods -- References.
Record Nr. UNISA-996466748203316
Pyeon Cheol Ho  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui