Biosensors in agriculture : recent trends and future perspectives / / Ramesh Namdeo Pudake, Utkarsh Jain, Chittaranjan Kole, editors |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XV, 493 p. 83 illus., 72 illus. in color.) |
Disciplina | 631.3 |
Collana | Concepts and strategies in plant sciences |
Soggetto topico |
Agricultural instruments
Agricultural innovations Biosensors Innovacions agrícoles |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-66165-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Recent trends, prospects, and challenges of nanobiosensors in agriculture -- Nanostructured platforms integrated to biosensors: Recent applications in agriculture. Advances in nanotechnology for bio-sensing in agriculture and food -- Nanomaterial based gas sensor for agriculture sector -- Volatile organic compounds (VOCs) sensors for stress management in crops -- Current trends of plasmonic nanosensors use in agriculture -- Relevance of biosensor in climate smart organic agriculture and their role in environmental sustainability: What has been done and what we need to do? -- New trends in biosensors for pesticide detection -- Application of biosensor for the identification of various pathogens and pests mitigating against the agricultural production: recent advances -- Gold nanoparticles-based point-of-care colorimetric diagnostic for plant diseases -- Advancements in biosensors for fungal pathogen detection in plants -- Journey of Agricultural sensors – From conventional to ultra-modern -- PART II: Biosensors in food science, Advances in biosensors based on electrospun micro/nanomaterials for food quality control and safety -- Current trend of electrochemical sensing for mytoxins -- Biosensor for fruit quality monitoring -- Lateral flow assays for food authentication -- Nanobiosensors in agriculture and foods: a scientometric review -- PART III: Biosensors in animal and fishery Sciences, Biosensors: Modern tools for disease diagnosis and animal health monitoring -- Nano-biosensing devices detecting biomarkers of communicable and non-communicable diseases of animals -- Recent advances in biosensor development for poultry industry -- Smart aquaculture: Integration of sensors, biosensors, and artificial intelligence -- Biosensor as potential tool for on-site detection of insect pathogens. |
Record Nr. | UNINA-9910483400003321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Millet Rhizosphere / / edited by Ramesh Namdeo Pudake, Maya Kumari, Deepak Rameshwar Sapkal, Anil Kumar Sharma |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (355 pages) |
Disciplina | 610.28 |
Collana | Rhizosphere Biology |
Soggetto topico |
Millets
Rhizosphere |
ISBN | 981-9921-66-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1 -- Plant-microbe interactions promoting millets plant growth and health: Perspectives for use of microorganisms in millets production, Chapter 2 -- Diversity and function of microbes associated with the rhizosphere of millets, Chapter 3 -- Biodiversity of arbuscular mycorrhizal fungi and its impact on millets growth, Chapter 4 -- Drought-tolerant plant growth-promoting rhizobacteria associated with millets, Chapter 5 -- Identification of novel microbial strain for reduced pesticide use in millets, Chapter 6 -- Current insights into the role of rhizosphere bacteria in disease suppression in millets, Chapter 7 -- Comparison of rhizospheric functional diversity between chemically fertilized and bioinoculated millet, Chapter 8 -- Deciphering the role and diversity of microbes present in millet rhizosphere, Chapter 9 -- Role of phosphate solubilizing microbes on phosphorous availability and yield attributes of millet, Chapter 10 -- Impact of rhizosphere ecology on nitrogen fixation in millets, Chapter 11 -- Synergistic effects of arbuscular mycorrhizal fungi and PGPR on yield improvements in millets, Chapter 13 -- Understanding of belowground biochemical communication in millets through metabolomics, Chapter 14 -- Prospects of gene editing techniques in manipulating the rhizosphere microbiome for millets productivity, Chapter 15 -- Effect of nano-formulated agrochemicals on rhizospheric communities in millets, Chapter 16 -- Potential application of nanotechnology in biofertilizer formulation for millets. |
Record Nr. | UNINA-9910746082303321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanoscience for Sustainable Agriculture / / edited by Ramesh Namdeo Pudake, Nidhi Chauhan, Chittaranjan Kole |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XV, 711 p.) |
Disciplina | 630 |
Soggetto topico |
Agriculture
Plant science Botany Nanotechnology Plant Sciences |
ISBN | 3-319-97852-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Application of Nanotechnology in genetic improvement in crops -- Nano-biofertilizers in crop nutrition: An overview -- Micronutrient management in field crops through nanotools -- Nanomaterials in rhizospheric soil: An insight on soil-plant interface behaviour -- Biopolymeric nanoparticles as a nanocide for crop protection -- Use of Carbon nanomaterials in plant growth and protection -- Nanotechnology and entomopathogenic microorganism in modern agriculture -- Nanosensors for plant disease diagnosis: Current understanding and future perspectives -- Plant pathogen control by nanocides -- Role of nanomaterials in nematode control -- Progress on nanoparticles as carriers for pesticides delivery to sustainable growth of agriculture -- Nanotools for weed control -- Nanotools for irrigation water remediation -- Nanotechnology applications in food: A scientometric overview -- Applications of nanotechnology in functional food -- Nanomaterials for active and smart packaging -- Nanotechnology for enhancing sea food production and its application in coastal agriculture -- Sensors for food quality monitoring -- Role of nanoliposomes in the food sector -- Drug encapsulation and nanocarriers for targeted delivery in animals -- Nano-materials in dairy industry: Current and future prospects -- Nanoparticles for detection, imaging and diagnostics applications in animals -- Nanotechnology for aquaculture -- Biosynthesis of nanoparticles by forest plant species and its uses in plant protection -- Nanocellulose from agro-residues and forest biomass for pulp and paper product -- Application of nanotechnology for value addition in medicinal and aromatic plants -- Nano-enabled technological interventions for sustainable production, protection and storage of horticultural crops -- Nano-materials and vegetable crops: Realizing the concept of sustainable production -- Structural and ultrastructural changes in nanoparticles exposed plants -- Nano-robotics and sustainability in agriculture -- Microfluidics devices for Agricultural application. |
Record Nr. | UNINA-9910349443403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Omics of climate resilient small millets / / edited by Ramesh Namdeo Pudake, [and three others] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (363 pages) |
Disciplina | 304.2 |
Soggetto topico | Genomics |
ISBN | 981-19-3907-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- 1: Small Millets: The Next-Generation Smart Crops in the Modern Era of Climate Change -- 1.1 Introduction -- 1.2 Salient Features of Small Millets -- 1.2.1 Finger Millet (Eleusine coracana L. Gaertn) -- 1.2.2 Foxtail Millet (Setaria Italica L.) -- 1.2.3 Proso Millet (Panicum miliaceum L.) -- 1.2.4 Barnyard Millet (Echinochloa frumentacea L.) -- 1.2.5 Little Millet (Panicum sumatrense Roth. ex Roem. and Schult) -- 1.2.6 Kodo Millet -- 1.2.7 Brown-Top Millet -- 1.3 Small Millets as Functional Foods -- 1.4 Small Millets as Climate-Smart Crops -- 1.4.1 Millets as a Driver of Climate-Smart Agriculture -- 1.4.1.1 Productivity of Small Millets -- 1.4.1.2 Adapting to Changing Climate -- 1.4.1.3 Mitigating Climate Change -- 1.5 Climate-Smart Small Millets Production Practices -- 1.5.1 Integrated Nutrient Management (INM) -- 1.5.2 Soil Test Crop Response (STCR)-Based Nutrient Management -- 1.5.3 Resource Conserving Technologies -- 1.5.4 Breeding of Suitable Varieties -- 1.5.5 Agronomic Practice Adjustment -- 1.5.6 System of Millet Intensification -- 1.6 Conclusion -- References -- 2: Omics for Abiotic Stress Tolerance in Foxtail Millet -- 2.1 Introduction -- 2.2 Characterization of Abiotic Stress Tolerance Mechanism in Foxtail Millet -- 2.2.1 Genomics Studies in Foxtail Millets to Understand Abiotic Stress -- 2.2.2 Functional Genomics -- 2.2.3 Transcriptomics -- 2.2.4 Proteomics -- 2.2.5 Metabolomics -- 2.2.6 Phenomics -- 2.3 Conclusion -- References -- 3: Current Status and Future Prospects of Omics Strategies in Barnyard Millet -- 3.1 Introduction -- 3.2 Omics in Barnyard Millet -- 3.2.1 Studies on Nuclear Genome -- 3.2.2 Chloroplast Genome Studies -- 3.2.3 Transcriptomics Studies -- 3.2.4 Proteomics Studies -- 3.3 Application of Omics in Barnyard Millet -- 3.3.1 Genetic Diversity Studies.
3.3.2 Gene/QTL Mapping -- 3.3.3 Comparative Genomics Studies -- 3.4 Summary and Future Perspective -- References -- 4: Role of Inducible Promoters and Transcription Factors in Conferring Abiotic Stress-Tolerance in Small Millets -- 4.1 Introduction -- 4.2 Plant Responses to Abiotic Stresses -- 4.3 Mining of Transcription Factors (TFs) and Inducible Promoters and their Role in Combating Abiotic Stresses -- 4.3.1 Finger Millet -- 4.3.2 Foxtail Millet -- 4.3.3 Other Small Millets -- 4.4 Comparative Analysis of TFs across Millets -- 4.5 Future Prospects -- References -- 5: Genome-Wide Identification and Expression Profiling of Noncoding RNAs in Response to Abiotic Stresses in Small Millets -- 5.1 Introduction -- 5.2 Noncoding RNA -- 5.2.1 Role of Millets microRNA during Abiotic Stress Conditions -- 5.2.1.1 Methods to Identify Abiotic Stress-Related miRNA -- 5.2.1.2 Abiotic Stress-Responsive miRNAs in Small Millets -- 5.2.2 Role of lncRNA in Abiotic Stress -- 5.2.3 LncRNA and their Role in Abiotic Stress -- 5.2.4 Drought-Responsive siRNA in Small Millets -- 5.3 Databases and Tools Used for Identification and Analysis of Noncoding RNA in Small Millets -- 5.4 Conclusion -- References -- 6: Insights into Abiotic Stress Tolerance in Small Millets through Transcriptomics -- 6.1 Introduction -- 6.2 Millets and Abiotic Stresses -- 6.3 Transcriptome Efforts in Small Millets -- 6.3.1 Finger Millet (Eleusine coracana L. Gaertn) -- 6.3.2 Barnyard Millet (Echinochloa esculenta A. Braun) -- 6.3.3 Proso Millet (Panicum miliaceum L.) -- 6.3.4 Foxtail Millet (Setaria italica (L.) P. Beauv) -- 6.3.5 Kodo Millet (Paspalum scrobiculatum L.) -- 6.3.6 Little Millet (Panicum sumatrense Roth. Ex Roemer and Schultes) -- 6.4 Conclusion and Future Perspectives -- References -- 7: Role of Proteomics in Understanding the Abiotic Stress Tolerance in Minor Millets -- 7.1 Introduction. 7.2 Morpho-Physio and Biochemical Responses of Minor Millets to Abiotic Stresses -- 7.3 The Need for Proteomics Research to Understand the Abiotic Stress Tolerance -- 7.4 Potential and Advances of Proteomics to Improve the Abiotic Stress Tolerance -- 7.5 Proteomics of Minor Millets Grown under Abiotic Stress -- 7.6 Conclusion and Future Perspectives -- References -- 8: Plant Regeneration and Transgenic Approaches for the Development of Abiotic Stress-Tolerant Small Millets -- 8.1 Introduction -- 8.2 Factors That Hinder the Production of Small Millets -- 8.3 Mechanism of Abiotic Stress Tolerance in Small Millets -- 8.4 Plant Regeneration Methods in Small Millets -- 8.4.1 Finger Millet -- 8.4.2 Foxtail Millet -- 8.4.3 Proso Millet -- 8.4.4 Barnyard Millet -- 8.4.5 Kodo Millet -- 8.4.6 Tef Millet -- 8.4.7 Fonio Millet -- 8.5 Transformation Studies in Small Millets -- 8.5.1 Finger Millet -- 8.5.2 Foxtail Millet -- 8.5.3 Barnyard Millet -- 8.5.4 Kodo Millet -- 8.5.5 Tef Millet -- 8.5.6 Fonio Millet -- 8.6 Transgenic Approaches to Produce Abiotic Stress-Tolerant Small Millets -- 8.6.1 Finger Millet -- 8.6.2 Foxtail Millet -- 8.7 Functionally Characterized Abiotic Stress Resistance Genes in Small Millets -- 8.8 Conclusion and Future Perspective -- References -- 9: Mining Genes and Markers Across Minor Millets Using Comparative Genomics Approaches -- 9.1 Introduction -- 9.2 Genome Sequences of Small Millets -- 9.3 Comparative Genomics Approaches in Small Millets -- 9.3.1 Analysis of Microsatellite Markers of Millets with Closely Related Cereals Through Comparative Genomic Approaches -- 9.3.2 Identification of Candidate Genes Targeting QTLs Reported in Small Millets -- 9.3.3 Expression Analysis of Stress-Related Genes in Small Millets by Comparative Genomics -- 9.4 Mining of Genes from Genome Sequences of Millets -- 9.5 Steps -- 9.6 Conclusion -- References. 10: Improving the Nutrient-Use Efficiency in Millets by Genomics Approaches -- 10.1 Introduction -- 10.2 Nutritional Importance of Millets -- 10.3 Influence of Nutrients on Millet Growth and Production -- 10.4 Characterization of Millet Germplasm for Nutrient-Use Efficiency -- 10.5 Genomic Approaches for Improving Nutrient-Use Efficiency in Millets -- 10.5.1 Molecular Marker-Assisted Breeding Approaches -- 10.5.2 Functional Genomic Approaches -- 10.5.3 Genomics-Assisted Breeding Approaches -- 10.6 Conclusion and Future Prospectus -- References -- 11: Current Status of Bioinformatics Resources of Small Millets -- 11.1 Introduction -- 11.2 Genome Sequences Available in Minor Millets -- 11.3 Online Genomic Resources and Databases Available for Small Millets -- 11.3.1 Gramene Portal -- 11.3.1.1 Gene and Genome Browsers -- 11.3.1.2 Pathway Browser -- 11.3.1.3 Plant Gene Expression Atlas -- 11.3.1.4 Analysis and Visualization Tools -- 11.3.2 Millet Genome Database -- 11.3.3 Setaria italica Genome Database (SiGDB) -- 11.3.4 Foxtail Millet Marker Database (FmMDb) -- 11.3.5 Foxtail Millet MicroRNA Database (FmMiRNADb) -- 11.3.6 Foxtail Millet Transcription Factor Database (FmTFDb) -- 11.3.7 Foxtail Millet Transposable Elements-Based Marker Database (FmTEMDb) -- 11.3.8 Phytozome Database -- 11.3.8.1 Text and Sequence Search -- 11.3.8.2 Gene Family and Gene Page Views -- 11.3.8.3 Data Access -- 11.3.9 Plant Metabolic Network Database -- 11.3.9.1 Blast Tool -- 11.3.9.2 Metabolic Cluster View -- 11.4 Conclusion and Prospects -- References -- 12: Advances in Omics for Enhancing Abiotic Stress Tolerance in Finger Millets -- 12.1 Introduction -- 12.2 Development and Utilization of DNA Markers in Finger Millet -- 12.2.1 Random Amplified Polymorphic DNA (RAPD) -- 12.2.2 Inter Simple Sequence Repeat (ISSR) -- 12.2.3 Simple Sequence Repeats (SSRs). 12.2.4 Expressed Sequence Tags (EST) SSRs (EST-SSRs) -- 12.2.5 Next Generation Sequencing (NGS) Derived Markers in Finger Millet -- 12.3 Different Omics Approaches in the Technological Era -- 12.3.1 Transcriptomics -- 12.3.2 Proteomics -- 12.3.3 Ionomics -- 12.3.4 Metabolomics -- 12.4 Reverse Genomics -- 12.4.1 Overexpressions (Transgenomics) -- 12.4.2 Gene Silencing -- 12.5 Conclusion and Future Prospects -- References -- 13: Genome-Editing Approaches for Abiotic Stress Tolerance in Small Millets -- 13.1 Introduction -- 13.2 Adaptation of Small Millets for Tolerance to Abiotic Stress -- 13.3 Progress Made in Genome Editing of Millets for Abiotic Stress Tolerance -- 13.3.1 CRISPR/Cas9 Targeting of Abiotic Stress Tolerance Genes -- 13.3.2 RNA Interference -- 13.4 Role of Biosafety and Regulation in Plant Genome Editing -- 13.5 Conclusion -- References -- 14: Integrating Genomics and Phenomics Tools to Dissect Climate Resilience Traits in Small Millets -- 14.1 Introduction -- 14.2 Productivity and Major Producers of Small Millets -- 14.3 Nutritional Significance of Small Millets -- 14.4 Abiotic Stress Tolerance in Small Millets -- 14.4.1 Drought Stress -- 14.4.2 Heat Stress -- 14.4.3 Salinity Stress -- 14.4.4 Flooding Stress -- 14.4.5 Chilling/Freezing Stress -- 14.4.6 Mineral-Deficient Soils -- 14.4.7 Metal Toxicity -- 14.5 Conventional and Molecular Breeding Approaches for Enhancing Stress Tolerance -- 14.6 Genomics-Assisted Breeding in Small Millets -- 14.7 Phenomics and Its Implication in Crop Improvement -- 14.8 Integrating Genomics and Phenomics in Small Millets for Climate Resilience -- 14.9 Conclusions and Future Perspectives -- References -- 15: Abiotic Stress Tolerant Small Millet Plant Growth Regulation by Long Non-coding RNAs: An Omics Perspective -- 15.1 Introduction. 15.2 Millet as a Climate-Smart Model Candidate for Future Agricultural Sustainability: An Overview. |
Record Nr. | UNINA-9910584478403321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Omics science for rhizosphere biology / / Ramesh Namdeo Pudake [and three others] editors |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XIII, 279 p. 24 illus., 21 illus. in color.) |
Disciplina | 581.10428 |
Collana | Rhizosphere Biology |
Soggetto topico |
Rhizosphere
Rizosfera Botànica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-16-0889-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Rhizosphere Metagenomics – Methods and Challenges -- Chapter 2. Metagenomic Approach in Relation to Plant-Microbe and Microbe-Microbe Interactions -- Chapter 3. Metagenomics and metatranscriptomics approaches in understanding and discovering novel molecules in rhizosphere environment -- Chapter 4. "Omics” approaches for understanding soil suppressiveness in agriculture -- Chapter 5. Rhizosphere dynamics: an OMICS perspective -- Chapter 6. Transcriptomics analyses and the relationship between plant and plant growth-promoting rhizobacteria (PGPR) -- Chapter 7. Proteomics for understanding the interaction between plant and rhizospheric microflora -- Chapter 8. A proteomics perspective for understanding rhizosphere biology at higher altitudes -- Chapter 9. Structural and functional rhizospheric microbial diversity analysis by cutting edge biotechnological tools -- Chapter 10. Rhizosphere Fingerprints: Novel Biomolecules via Meta-Omics Technology -- Chapter 11. Rhizosphere virology and plant health -- Chapter 12. Long sequencing tools for rhizosphere study -- Chapter 13. Rhizoengineering: A strategy to enhance soil and crop productivity -- Chapter 14. Endospheric microbiome assisted alteration in the metabolomic profiling of host towards abiotic stress mitigation. . |
Record Nr. | UNINA-9910483277203321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|