top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Efficiency of biomass energy : an exergy approach to biofuels, power, and biorefineries / / Krzysztof J. Ptasinski
Efficiency of biomass energy : an exergy approach to biofuels, power, and biorefineries / / Krzysztof J. Ptasinski
Autore Ptasinski Krzysztof J.
Pubbl/distr/stampa Hoboken, New Jersey : , : AlChE : , : Wiley, , 2016
Descrizione fisica 1 online resource (1131 p.)
Disciplina 662.88
Soggetto topico Biomass energy
Biomass - Quality
Biomass conversion
Soggetto genere / forma Electronic books.
ISBN 1-119-11815-8
1-119-11814-X
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface Acknowledgments About the Author Part I BACKGROUND AND OUTLINE 1. BIOENERGY SYSTEMS - AN OVERVIEW 1.1 Energy and the Environment 1.2 Biomass as a Renewable Energy Source 1.3 Biomass Conversion Processes 1.4 Utilization of Biomass 1.5 Closing Remarks References 2. EXERGY ANALYSIS 2.1 Sustainability and Efficiency 2.2 Thermodynamic Analysis of Processes 2.3 Exergy Concept 2.4 Exergetic Evaluation of Processes and Technologies 2.5 Renewability of Biofuels 2.6 Closing Remarks References Part II BIOMASS PRODUCTION AND CONVERSION 3. PHOTOSYNTHESIS 3.1 Photosynthesis - an Overview 3.2 Exergy of Thermal Radiation 3.3 Exergy Analysis of Photosynthesis 3.4 Global Photosynthesis 3.5 Closing Remarks References 4. BIOMASS PRODUCTION 4.1 Overview 4.2 Efficiency of Solar Energy Capture 4.3 Fossil Inputs for Biomass Cultivation and Harvesting 4.4. Fossil Inputs for Biomass Logistics 4.5 Closing Remarks References 5 THERMOCHEMICAL CONVERSION: GASIFICATION 5.1 Gasification - an Overview 5.2 Gasification of Carbon 5.3 Gasification of Biomass 5.4 Gasification of Typical Fuels 5.5 Closing Remarks References 6 THERMOCHEMICAL CONVERSION: PARAMETRIC STUDIES AND GASIFICATION SYSTEMS 6.1 Effect of Fuel Chemical Composition on Gasification Performance 6.2 Effect of Biomass Moisture Content, Gasification Pressure and Heat Addition on Gasification Performance 6.3 Improvement of Gasification Exergetic Efficiency 6.4 Gasification Efficiency Using Equilibrium versus Non-equilibrium Models 6.5 Performance of Typical Gasifiers 6.6 Plasma Gasification 6.7 Thermochemical Conversion in Sub- and Supercritical Water 6.8 Closing Remarks References Part III BIOFUELS First-Generation Biofuels 7 BIODIESEL 7.1 Biodiesel: an Overview 7.2 Biodiesel from Plant Oils 7.3 Biodiesel from Waste Cooking Oil 7.4 Biodiesel from Microalgae 7.5 Closing Remarks References 8 BIOETHANOL 8.1 Bioethanol - an Overview 8.2 Exergy Analysis of Ethanol from Sugar Crops 8.3 Exergy Analysis of Ethanol from Starchy Crops 8.4 Exergy Analysis of Lignocellulosic Ethanol (2nd Generation) 8.5 Alternative Ethanol Processes 8.6 Closing Remarks References Second-Generation Liquid Biofuels 9 FISCHER-TROPSCH FUELS 9.1 Fischer-Tropsch Synthesis - an Overview 9.2 Exergy Analysis of Coal-to-Liquid (CTL) Process 9.3 Exergy Analysis of Gas-to-Liquid (GTL) Processes 9.4 Exergy Analysis of Biomass-to-Liquid (BTL) Processes 9.5 Closing Remarks References 10 METHANOL 10.1 Methanol - an Overview 10.2 Methanol from Fossil Fuels 10.3 Methanol from Biomass 10.4 Closing Remarks References 11 THERMOCHEMICAL ETHANOL 11.1 Thermochemical Ethanol -an Overview 11.2 Exergy Analysis 11.3 Closing Remarks References Second-Generation Gaseous Biofuels 12 DIMETHYL ETHER (DME) 12.1 Dimethyl Ether - an Overview 12.2 Dimethyl Ether from Fossil Fuels 12.3 Dimethyl Ether from Biomass 12.4 Closing Remarks References 13 HYDROGEN 13.1 Hydrogen - an Overview 13.2 Exergy Analysis of Hydrogen from Fossil Fuels 13.3 Exergy Analysis of Hydrogen from Water Electrolysis 13.4 Exergy Analysis of Future Hydrogen Production Processes 13.5 Exergy Analysis of Hydrogen from Biomass Gasification 13.6 Exergy Analysis of Biological Hydrogen Production 13.7 Closing Remarks References 14 SUBSTITUTE NATURAL GAS (SNG) 14.1 Substitute Natural Gas - an Overview 14.2 SNG from Coal 14.3 SNG from Biomass Gasification 14.4 Closing Remarks References Part IV BIOENERGY SYSTEMS 15 THERMAL POWER PLANTS, HEAT ENGINES AND HEAT PRODUCTION 15.1 Biomass-Based Power and Heat Generation - an Overview 15.2 Biomass Combustion Power Systems 15.3 Biomass Gasification Power Systems 15.4 Comparison of Various Biomass-Fueled Power Plants 15.5 Biomass-Fueled Internal Combustion Engines and Gas Turbines 15.6 Polygeneration of Electricity, Heat and Chemicals 15.7 Biomass Boilers and Heating Systems 15.8 Closing Remarks References 16 BIOMASS-BASED FUEL CELL SYSTEMS 16.1 Biomass-Based Fuel Cell Systems - an Overview 16.2 Biomass Integrated Gasification: Solid Oxide Fuel Cell (BIG/SOFC) Systems 16.3 Biomass Integrated Gasification: Proton Exchange Membrane Fuel Cell (BIG/PEMFC) Systems 16.4 Fuel Cell Systems Fed with Liquid Biofuels 16.5 Closing Remarks References 17 BIOREFINERIES 17.1 Biorefineries: an Overview 17.2 Comparison of Various Biomass Utilization Routes 17.3 Exergy Inputs to Basic Biorefinery Steps 17.4 Optimal Biomass Crops as Biorefinery Feedstock 17.5 Closing Remarks References Postface Appendixes Appendix A: Conversion Factors Appendix B: Constants Appendix C: SI Prefixes Glossary Notation Acknowledgments for permission to reproduce copyrighted material Author Index Subject Index.
Record Nr. UNINA-9910136932103321
Ptasinski Krzysztof J.  
Hoboken, New Jersey : , : AlChE : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Efficiency of biomass energy : an exergy approach to biofuels, power, and biorefineries / / Krzysztof J. Ptasinski
Efficiency of biomass energy : an exergy approach to biofuels, power, and biorefineries / / Krzysztof J. Ptasinski
Autore Ptasinski Krzysztof J.
Pubbl/distr/stampa Hoboken, New Jersey : , : AlChE : , : Wiley, , 2016
Descrizione fisica 1 online resource (1131 p.)
Disciplina 662.88
Soggetto topico Biomass energy
Biomass - Quality
Biomass conversion
ISBN 1-119-11815-8
1-119-11814-X
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface Acknowledgments About the Author Part I BACKGROUND AND OUTLINE 1. BIOENERGY SYSTEMS - AN OVERVIEW 1.1 Energy and the Environment 1.2 Biomass as a Renewable Energy Source 1.3 Biomass Conversion Processes 1.4 Utilization of Biomass 1.5 Closing Remarks References 2. EXERGY ANALYSIS 2.1 Sustainability and Efficiency 2.2 Thermodynamic Analysis of Processes 2.3 Exergy Concept 2.4 Exergetic Evaluation of Processes and Technologies 2.5 Renewability of Biofuels 2.6 Closing Remarks References Part II BIOMASS PRODUCTION AND CONVERSION 3. PHOTOSYNTHESIS 3.1 Photosynthesis - an Overview 3.2 Exergy of Thermal Radiation 3.3 Exergy Analysis of Photosynthesis 3.4 Global Photosynthesis 3.5 Closing Remarks References 4. BIOMASS PRODUCTION 4.1 Overview 4.2 Efficiency of Solar Energy Capture 4.3 Fossil Inputs for Biomass Cultivation and Harvesting 4.4. Fossil Inputs for Biomass Logistics 4.5 Closing Remarks References 5 THERMOCHEMICAL CONVERSION: GASIFICATION 5.1 Gasification - an Overview 5.2 Gasification of Carbon 5.3 Gasification of Biomass 5.4 Gasification of Typical Fuels 5.5 Closing Remarks References 6 THERMOCHEMICAL CONVERSION: PARAMETRIC STUDIES AND GASIFICATION SYSTEMS 6.1 Effect of Fuel Chemical Composition on Gasification Performance 6.2 Effect of Biomass Moisture Content, Gasification Pressure and Heat Addition on Gasification Performance 6.3 Improvement of Gasification Exergetic Efficiency 6.4 Gasification Efficiency Using Equilibrium versus Non-equilibrium Models 6.5 Performance of Typical Gasifiers 6.6 Plasma Gasification 6.7 Thermochemical Conversion in Sub- and Supercritical Water 6.8 Closing Remarks References Part III BIOFUELS First-Generation Biofuels 7 BIODIESEL 7.1 Biodiesel: an Overview 7.2 Biodiesel from Plant Oils 7.3 Biodiesel from Waste Cooking Oil 7.4 Biodiesel from Microalgae 7.5 Closing Remarks References 8 BIOETHANOL 8.1 Bioethanol - an Overview 8.2 Exergy Analysis of Ethanol from Sugar Crops 8.3 Exergy Analysis of Ethanol from Starchy Crops 8.4 Exergy Analysis of Lignocellulosic Ethanol (2nd Generation) 8.5 Alternative Ethanol Processes 8.6 Closing Remarks References Second-Generation Liquid Biofuels 9 FISCHER-TROPSCH FUELS 9.1 Fischer-Tropsch Synthesis - an Overview 9.2 Exergy Analysis of Coal-to-Liquid (CTL) Process 9.3 Exergy Analysis of Gas-to-Liquid (GTL) Processes 9.4 Exergy Analysis of Biomass-to-Liquid (BTL) Processes 9.5 Closing Remarks References 10 METHANOL 10.1 Methanol - an Overview 10.2 Methanol from Fossil Fuels 10.3 Methanol from Biomass 10.4 Closing Remarks References 11 THERMOCHEMICAL ETHANOL 11.1 Thermochemical Ethanol -an Overview 11.2 Exergy Analysis 11.3 Closing Remarks References Second-Generation Gaseous Biofuels 12 DIMETHYL ETHER (DME) 12.1 Dimethyl Ether - an Overview 12.2 Dimethyl Ether from Fossil Fuels 12.3 Dimethyl Ether from Biomass 12.4 Closing Remarks References 13 HYDROGEN 13.1 Hydrogen - an Overview 13.2 Exergy Analysis of Hydrogen from Fossil Fuels 13.3 Exergy Analysis of Hydrogen from Water Electrolysis 13.4 Exergy Analysis of Future Hydrogen Production Processes 13.5 Exergy Analysis of Hydrogen from Biomass Gasification 13.6 Exergy Analysis of Biological Hydrogen Production 13.7 Closing Remarks References 14 SUBSTITUTE NATURAL GAS (SNG) 14.1 Substitute Natural Gas - an Overview 14.2 SNG from Coal 14.3 SNG from Biomass Gasification 14.4 Closing Remarks References Part IV BIOENERGY SYSTEMS 15 THERMAL POWER PLANTS, HEAT ENGINES AND HEAT PRODUCTION 15.1 Biomass-Based Power and Heat Generation - an Overview 15.2 Biomass Combustion Power Systems 15.3 Biomass Gasification Power Systems 15.4 Comparison of Various Biomass-Fueled Power Plants 15.5 Biomass-Fueled Internal Combustion Engines and Gas Turbines 15.6 Polygeneration of Electricity, Heat and Chemicals 15.7 Biomass Boilers and Heating Systems 15.8 Closing Remarks References 16 BIOMASS-BASED FUEL CELL SYSTEMS 16.1 Biomass-Based Fuel Cell Systems - an Overview 16.2 Biomass Integrated Gasification: Solid Oxide Fuel Cell (BIG/SOFC) Systems 16.3 Biomass Integrated Gasification: Proton Exchange Membrane Fuel Cell (BIG/PEMFC) Systems 16.4 Fuel Cell Systems Fed with Liquid Biofuels 16.5 Closing Remarks References 17 BIOREFINERIES 17.1 Biorefineries: an Overview 17.2 Comparison of Various Biomass Utilization Routes 17.3 Exergy Inputs to Basic Biorefinery Steps 17.4 Optimal Biomass Crops as Biorefinery Feedstock 17.5 Closing Remarks References Postface Appendixes Appendix A: Conversion Factors Appendix B: Constants Appendix C: SI Prefixes Glossary Notation Acknowledgments for permission to reproduce copyrighted material Author Index Subject Index.
Record Nr. UNINA-9910829916203321
Ptasinski Krzysztof J.  
Hoboken, New Jersey : , : AlChE : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui