top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
MXenes : Fundamentals and Applications
MXenes : Fundamentals and Applications
Autore Singh Jay
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (385 pages)
Disciplina 546.6
Altri autori (Persone) SinghKshitij Rb
Pratap SinghRavindra
AdetunjiCharles Oluwaseun
Soggetto topico MXenes
Two-dimensional materials
ISBN 9781119874003
1119874009
9781119874027
1119874025
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes.
4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials.
7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations.
10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy.
14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction.
18.2 Progressive Approach Towards MXene Composites and Hybrids.
Record Nr. UNINA-9911019413103321
Singh Jay  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
MXenes: Expanding the Frontiers of Energy Applications / / edited by Jay Singh, Kshitij RB Singh, Ranjana Verma, Ravindra Pratap Singh
MXenes: Expanding the Frontiers of Energy Applications / / edited by Jay Singh, Kshitij RB Singh, Ranjana Verma, Ravindra Pratap Singh
Autore Singh Jay
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (319 pages)
Disciplina 628.5
660.6
Altri autori (Persone) SinghKshitij Rb
VermaRanjana
Pratap SinghRavindra
Collana Clean Energy Production Technologies
Soggetto topico Bioremediation
Materials science
Nanotechnology
Environmental Biotechnology
Materials Science
ISBN 9789819604913
9819604915
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. MXenes: An Overview for Future Utility in the Energy Storage and Conversion -- Chapter 2. Preparation Methods, Functionalization, and Physicochemical Properties of MXenes -- Chapter 3. Mechanistic Approaches of Nanostructured MXenes for Energy Storage Applications -- Chapter 4. Role of MXenes toward enzymatic biofuel and biofuel cell design -- Chapter 5. Potentialities of MXenes and its Hybrid Materials for Hydrogen Storage -- Chapter 6. Utility of MXenes and its Hybrid Materials for Batteries -- Chapter 7. MXene-Based Materials for Photocatalytic Water Splitting -- Chapter 8. Potentialities of MXenes and MXene-Based Materials for Supercapacitor Applications -- Chapter 9. Utility of MXenes for Catalysis, Electrocatalysis, and Fuel Cells -- Chapter 10. Technological Aspects of MXenes: Current Challenges and Future Perspectives.
Record Nr. UNINA-9910983340703321
Singh Jay  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiosensors for Environmental Monitoring : Fundamentals and Application / / edited by Ravindra Pratap Singh, Kingsley Eghonghon Ukhurebor, Jay Singh, Charles Oluwaseun Adetunji, Kshitij RB Singh
Nanobiosensors for Environmental Monitoring : Fundamentals and Application / / edited by Ravindra Pratap Singh, Kingsley Eghonghon Ukhurebor, Jay Singh, Charles Oluwaseun Adetunji, Kshitij RB Singh
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (469 pages)
Disciplina 610.28
Collana Earth and Environmental Science Series
Soggetto topico Environmental monitoring
Chemical detectors
Environmental chemistry
Environmental engineering
Biotechnology
Bioremediation
Environmental management
Environmental Monitoring
Sensors
Environmental Chemistry
Environmental Engineering/Biotechnology
Environmental Management
ISBN 3-031-16106-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to Nanobiosensors -- Chapter 2. Classification, properties, and fabrication techniques of nanobiosensors -- Chapter 3. Nanobiosensors potentialities for environmental monitoring -- Chapter 4. Utilization of nanobiosensors for wastewater management -- Chapter 5. Nanobiosensors for Environmental Risk Assessment and Management -- Chapter 6. Challenges and Scope in Nanobiosensors Utilization for Environmental Monitoring -- Chapter 7. Role and Significance of Nanobiosensors for Environmental Remediation -- Chapter 8. Bioluminescence Sensors for Environmental Monitoring -- Chapter 9. Microbial and plant cell biosensors for environmental monitoring -- Chapter 10. Biomimetic material based biosensor for environmental monitoring -- Chapter 11. Chemiluminescence sensors for environmental monitoring -- Chapter 12. Nanobiosensor for mycotoxin detection in foodstuff -- Chapter 13. Current Existing Techniques for Environmental Monitoring -- Chapter 14. Molecularly imprinted polymers-based nano-biosensors for environmental monitoring and analysis -- Chapter 15. Plasmonic nanoparticles for naked-eye detection of environmental pollutants -- Chapter 16. Utility of nanobiosensors for heavy metal contamination detection in the environment -- Chapter 17. Nanobiosensors and Industrial Wastewater Treatments -- Chapter 18. Nanobiosensors potentialities for monitoring SARS-CoV-2 in the environment -- Chapter 19. Recent trends in rapid environmental monitoring of toxicants using nanobiosensors -- Chapter 20. Ecotoxicology of nanomaterials: a sensor perspective -- Chapter 21. Legal Implications of Nanobiosensors Concerning Environmental Monitoring.
Record Nr. UNINA-9910624383503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanochitosan Applications for Enhanced Crop Production and Food Security
Nanochitosan Applications for Enhanced Crop Production and Food Security
Autore Adetunji Charles Oluwaseun
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (441 pages)
Altri autori (Persone) ShahMaulin P
BelloYerima Mohammed
HefftDaniel Ingo
SinghJay
PandeyShyam S
Pratap SinghRavindra
ISBN 9781394214891
1394214898
9781394214945
1394214944
9781394214938
1394214936
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 The Role of Nanomaterials in Agriculture as Nanofertilizers -- 1.1 Introduction -- 1.2 Nanotechnology in Agriculture -- 1.3 Nanomaterials -- 1.3.1 Nanoparticles -- 1.3.1.1 Properties of Nanoparticles -- 1.3.1.2 Synthesis of Nanoparticles -- 1.3.2 Application of Nanotechnology in Agriculture -- 1.3.2.1 Application of Nanotechnology in Precision Farming -- 1.3.2.2 Nanosensors -- 1.3.2.3 Nanotechnology in Water Management -- 1.3.2.4 Biosensors to Detect Nutrients and Contaminants -- 1.3.2.5 Nanotechnology to Improve Quality of Soil and Fertilizer Distribution -- 1.3.2.6 Nanotechnology to Control Plant Diseases -- 1.3.2.7 Nanofertilizers -- 1.3.2.8 Nanostructured Formulation Reduce Nutrients Loss Into Soil by Leaching -- 1.3.2.9 Application of Nanotechnology in Seed Science -- 1.4 Nanofertilizers -- 1.4.1 Types of Nanofertilizers -- 1.4.2 Uptake and Accumulation Mechanisms of Nanofertilizers from Soil to Plants -- 1.4.3 Synthesis of Nanofertilizers -- 1.4.4 Characterization of Nanofertilizers -- 1.4.5 Advantages of Nanofertilizers -- 1.4.6 Limitations of Nanofertilizers -- 1.5 Conclusion -- References -- Chapter 2 Synthesis of Nano-Chitosan Using Agricultural Waste -- 2.1 Introduction -- 2.2 Different Sources of Agricultural Waste -- 2.2.1 Shell Wastes -- 2.2.2 Livestock Wastes -- 2.2.3 Crop Residues -- 2.2.4 Agricultural Industry Wastes -- 2.2.5 Nanomaterial Synthesis Using Agro-Waste -- 2.2.6 Chitin -- 2.2.7 Chitosan Nanoparticles -- 2.2.8 Properties of Nano-Chitosan -- 2.3 Synthesis of Nano-Chitosan -- 2.3.1 Nano-Precipitation -- 2.3.2 Drying Through Spraying -- 2.3.3 The Gelation Ionotropic Technique -- 2.3.4 Droplet Emulsion Coalescence and Solvent Emulsion Diffusion -- 2.3.5 Reverse Micelles -- 2.3.6 Polyelectrolyte Complex (PEC).
2.3.7 Biological Synthesis -- 2.3.8 Biogenic Synthesis of Nano-Chitosan Over Other Nanoparticles -- 2.3.9 Chitosan Nanoparticle Characterization -- 2.3.10 Nano-Chitosan Applications -- 2.3.10.1 In Agriculture -- 2.3.10.2 Biomedicals -- 2.3.10.3 Industry -- 2.4 Conclusion -- References -- Chapter 3 Reduction of Agricultural Greenhouse Gas Emissions by Nanochitosan -- 3.1 Introduction -- 3.2 Types of Greenhouse Gases Emitted in Agriculture -- 3.3 Environmental and Economic Consequences of Greenhouse Gases -- 3.4 Nanochitosan as a Potential Mitigation Strategy -- 3.5 Mechanisms of Action for Emission Reduction -- 3.6 Crop Yield and Quality -- 3.6.1 Collaborative Stakeholder Engagement -- 3.6.2 Promoting Sustainable Farming Practices -- 3.7 Limitations and Future Research Directions -- 3.8 Conclusion and Recommendations -- References -- Chapter 4 The Application of Nanochitosan Biopesticides as a Replacement to Synthetic Pesticides -- 4.1 Introduction -- 4.2 Nanochitosan -- 4.2.1 Properties of Nanochitosan -- 4.2.2 Synthesis of Nanochitosan -- 4.2.2.1 Emulsion Cross-Linking -- 4.2.2.2 Reverse Micellar Method -- 4.2.2.3 Precipitation Method -- 4.2.2.4 Ionic Gelation -- 4.2.3 Preparation of Nanochitosan -- 4.2.4 Application of Nanochitosan in Agriculture -- 4.3 Efficacy of Nanochitosan Compared to Synthetic Pesticides -- 4.3.1 Nanochitosan's Mechanism of Action Against the Pathogens -- 4.3.2 Bioactivity of Nanochitosan as a Biopesticide -- 4.3.3 Environmental Benefits of Nanochitosan -- 4.4 Challenges and Future Prospects for the Use of Chitosan Nanoparticles as Biopesticides -- 4.5 Conclusion -- 4.6 Recommendations -- References -- Chapter 5 The Use of Nanochitosan for Enhancement in the Quality and Yield of Fruit Crops -- 5.1 Introduction -- 5.2 Chitosan -- 5.3 The Impact of Chitosan NPs on the Growth and Yields of Some Fruit Crops -- 5.3.1 Cucumber.
5.3.2 Tomato -- 5.3.3 Mango -- 5.3.4 Orange -- 5.4 Application of Chitosan Nanoparticles (ChNPs) -- 5.4.1 In Agriculture -- 5.4.2 Plant Growth Enhancement and Increased Productivity -- 5.4.3 Biocides Against Plant Pathogens and Pests -- 5.5 Other Potential Use of Nanochitosan for Enhancing Fruit Crops -- 5.5.1 Enhanced Disease Resistance -- 5.5.2 Improved Nutrient Absorption -- 5.5.3 Stress Tolerance -- 5.5.4 Post-Harvest Preservation -- 5.5.5 Environmental Impact -- 5.6 Conclusion -- References -- Chapter 6 Application of Nanochitosan for Effective Fruit Production -- 6.1 Introduction -- 6.2 Mechanism of Action -- 6.3 Fruits -- 6.3.1 Economic Importance of Fruits -- 6.3.2 Nanochitosan in Fruits and Fruit Production -- 6.4 Guidelines in Effective Application of Nanochitosan -- 6.5 Application of Nanochitosan for Different Fruits -- 6.6 Conclusion -- References -- Chapter 7 Application of Nanochitosan in the Detection of Mycotoxins -- 7.1 Introduction -- 7.2 Nanochitosan -- 7.2.1 Preparation Methods of Nanochitosan -- 7.2.1.1 Ionotropic Gelation Method -- 7.2.1.2 Emulsification and Crosslinking Method -- 7.2.1.3 Reverse Micellar Method -- 7.2.1.4 Precipitation-Based Methods -- 7.2.2 Nanochitosan-Based Sensors for Mycotoxin Detection -- 7.2.2.1 Surface Plasmon Resonance Technique -- 7.2.2.2 Colorimetric Assay -- 7.2.2.3 Chitosan-Based Electrochemical Sensors -- 7.3 Advantages of Nanochitosan -- 7.3.1 Disadvantages of Nanochitosan -- 7.3.2 Factors That Affect Nanochitosan Formation -- 7.3.2.1 Molecular Weight and Degree of Deacetylation -- 7.3.2.2 pH -- 7.3.2.3 Temperature -- 7.3.2.4 Crosslinker -- 7.4 Conclusion -- 7.5 Recommendations -- References -- Chapter 8 Application of Nanochitosan in Food Packaging Sectors -- 8.1 The Evolution of Food Packaging -- 8.2 Standard Food Packaging -- 8.3 Types of Food Packaging -- 8.3.1 Primary Packaging.
8.3.2 Secondary Packaging -- 8.3.3 Tertiary Packaging -- 8.4 Environmental Impacts of Food Packaging -- 8.5 Significance of Food Packaging -- 8.6 Current Challenges in the Field of Food Packaging and Sustainability -- 8.7 Current Scenario of Nanotechnology Application in Food Packaging -- 8.8 Different Nanoparticles in Food Packaging Applications -- 8.8.1 Inorganic Nanoparticles in Food Packaging -- 8.8.2 Organic Nanoparticles in Food Packaging -- 8.8.2.1 Chitosan -- 8.8.2.2 Nanochitosan as a Food Packing Material -- 8.9 Preparation of Chitosan Nanoparticles -- 8.9.1 Ionic Gelation Method -- 8.9.2 Reverse Micellar Method -- 8.9.3 Nano-Based Food Packaging Methods -- 8.9.3.1 Active Packaging -- 8.9.3.2 Smart Packaging -- 8.9.3.3 Intelligent Packaging -- 8.9.4 Food Application of Chitosan -- 8.9.4.1 Edible Coating or Film -- 8.9.4.2 Bread -- 8.9.4.3 Egg -- 8.9.4.4 Vegetables and Fruits -- 8.9.4.5 Juice -- 8.9.4.6 Meat -- 8.9.4.7 Milk -- 8.9.4.8 Noodles -- 8.9.4.9 Rice Cake -- 8.9.4.10 Sausage -- 8.9.4.11 Seafoods and Seafood Products -- 8.9.4.12 Soybean Curd (Tofu) -- 8.9.4.13 Vinegar -- 8.9.5 Other Applications of Chitosan Nanoparticles -- 8.9.5.1 Medicine and Pharmaceuticals -- 8.9.5.2 Wastewater Treatment -- 8.10 Advantages of Nanotechnology in Food Packaging -- 8.10.1 Nanoparticles Protect Food Quality Decay Caused by Chemicals -- 8.10.2 Nanoparticles for Enhancing Physical Properties -- 8.10.3 Nanoparticles for the Detection of Food Borne Pathogens -- 8.10.4 Nanoparticles for Inhibiting Biofilm Formation -- 8.10.5 Eco-Friendly -- 8.11 Conclusion -- References -- Chapter 9 Application of Nanochitosan as Food Additive and Preservatives -- 9.1 Introduction -- 9.2 Importance of Food Additives and Preservatives in the Food Industry -- 9.3 Transition to the Application of Nanochitosan in Food Preservation -- 9.4 Physicochemical Properties of Chitosan.
9.4.1 Solubility -- 9.4.2 Molecular Weight -- 9.4.3 Degree of Deacetylation -- 9.4.4 Viscosity -- 9.5 Mechanisms of Food Spoilage and Preservation -- 9.6 Application of Nanochitosan as Food Additives -- 9.6.1 Nanochitosan as a Preservative Agent -- 9.7 Safety and Regulatory Considerations for Nanochitosan -- 9.8 Case Studies and Practical Applications of Nanochitosan -- 9.9 Future Prospects and Challenges -- 9.10 Conclusion -- References -- Chapter 10 Applications of Chitosan Nanocomposites in Packaging of Food Products -- 10.1 Introduction -- 10.2 The Chitosan Antimicrobial Potential -- 10.3 Chitosan Composites for Food Applications -- 10.3.1 Chitosan Enhanced with Nano-Sized Metals -- 10.3.1.1 Nano-Sized Zinc Oxide Particles (ZNPs) -- 10.3.1.2 Titanium Dioxide Nanoparticles (TNPs) -- 10.3.1.3 Silver Nanoparticles (AgNPs) -- 10.3.1.4 Silicon Dioxide and Silica Nanoparticles -- 10.3.1.5 Copper Nanoparticles (CuNPs) -- 10.3.1.6 Magnesium Nanoparticles (MgNPs) -- 10.3.1.7 Sulfur Nanoparticles (SNPs) -- 10.3.1.8 Chitosan Enhanced with Carbon -- 10.3.2 Polysaccharide-Chitosan Composite -- 10.3.3 Essential Oil-Chitosan-Based Composite for Food Applications -- 10.3.4 Gelatin-Chitosan-Based Composite for Food Packaging Applications -- 10.3.4.1 Application of Gelatin-Based Composites for Packaging Various Food Items -- 10.3.5 Clay-Chitosan-Based Composite for Food Packaging -- 10.3.5.1 Food Packaging-Related Applications of Chitosan-Clay Nanocomposites -- 10.3.6 Polyphenolics-Chitosan-Based Composite for Food Packaging -- 10.3.7 Polyvinyl Alcohol-Chitosan-Based Composite for Food Packaging -- 10.4 Conclusion -- References -- Chapter 11 Application of Nanochitosan as Biofertilizers for Sustainable Agriculture -- 11.1 Introduction to Nanoparticle and Chitosan -- 11.2 Nanofertilizers -- 11.2.1 Types of Nanofertilizers.
11.2.1.1 Classification Based on Their Modes of Action.
Record Nr. UNINA-9911020330303321
Adetunji Charles Oluwaseun  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui