top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Arsenic in Plants : Uptake, Consequences and Remediation Techniques
Arsenic in Plants : Uptake, Consequences and Remediation Techniques
Autore Srivastava Prabhat Kumar <1983->
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (445 pages)
Altri autori (Persone) SinghRachana
PariharParul
PrasadSheo Mohan
Soggetto genere / forma Electronic books.
ISBN 1-119-79146-4
1-119-79144-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 An Introduction to Arsenic: Sources, Occurrence, and Speciation -- 1.1 Introduction -- 1.2 Status of Arsenic Contamination Around the World -- 1.3 Arsenic in the Aquatic and Terrestrial Environment -- 1.4 Absolute Bioavailability and Bioaccessibility of As in Plants and Agronomic Systems -- 1.5 Factors Determining Arsenic Speciation and Bioavailability in Soil -- 1.5.1 Effect of Redox Potential (Eh) and pH -- 1.5.2 Interactions with Al, Fe, and Mn Oxides and Oxyhydroxides -- 1.5.3 Interactions with P, Si, and Other Elements' Concentration in the Soil -- 1.5.4 Interactions with Organic Matter -- 1.5.5 Clay Minerals and Other Factors -- 1.6 Arsenic Speciation in Plants -- 1.6.1 Methods of Determination of As and As Species in Plants -- 1.6.2 Uptake and Efflux Mechanism of Arsenate and Arsenite Species -- 1.6.3 Uptake and Efflux Mechanism of Methylated Arsenic Species -- 1.6.4 Arsenic and Rhizosphere Interaction (Mycorrhizal Fungi, Rhizofiltration) -- 1.7 Thiolated Arsenic and Bioavailability of Thiolated As Species in Plants and Terrestrial Environments -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2 Chemistry and Occurrence of Arsenic in Water -- 2.1 Chemical Properties of Arsenic -- 2.2 Worldwide Occurrence of Arsenic -- 2.3 Arsenic Occurrence in Natural Media -- 2.4 Arsenic Mobilization in Natural Media -- 2.5 Biological Methylation of Arsenic in Organisms -- 2.6 Anthropogenic Arsenic Contamination -- 2.7 Toxicity of Arsenic in Waters -- 2.8 Conclusion -- References -- Chapter 3 Arsenic Transport and Metabolism in Plants -- 3.1 Introduction -- 3.2 Arsenite Influx and Efflux -- 3.3 Arsenate Influx and Efflux -- 3.3.1 Arsenate and Phosphate Chemistry -- 3.3.2 Effects of As and P in Plants.
3.3.3 Nature of Phosphate Transporters in Plants -- 3.3.4 Variations in PHT upon As and P Addition -- 3.3.5 Gene Manipulation of PHTs and PHT Related TFs -- 3.4 Transportation of Methylated As Species -- 3.5 Arsenic Metabolism in Plants -- 3.6 Conclusion -- References -- Chapter 4 Arsenic Induced Responses in Plants: Impacts on Different Plant Groups, from Cyanobacteria to Higher Plants -- 4.1 Introduction -- 4.2 Responses of Arsenic on Various Plant Groups -- 4.3 Arsenic Response in Cyanophycean Algae -- 4.4 Responses on Other Groups of Algae (Chlorophyceae, Phaeophyceae, Rhodophyceae, Diatoms, Xanthophyceae, Charophyceae, etc.) -- 4.4.1 Chlorophyceae -- 4.4.2 Phaeophyceae -- 4.4.3 Rhodophyceae -- 4.4.4 Diatoms -- 4.5 Responses on Moss -- 4.6 Arsenic Response on Pteridophyte -- 4.7 Responses in Angiosperms -- 4.8 Perception of Arsenic Stress by Plants and Triggering of Signaling Cascades -- 4.9 Mechanistic Aspects of Responses Related to Arsenic (Effect on ATP Synthesis, Photosynthesis, DNA, Protein, Cell Membrane, Carbohydrate, and Lipid Metabolism) -- 4.9.1 Effect of Arsenic on ATP Synthesis -- 4.9.2 Arsenic's Effect on Photosynthesis -- 4.9.3 Effect of Arsenic on Cell Membrane -- 4.9.4 Arsenic Induced Oxidative Stress -- 4.9.5 Effect of Arsenic on Carbohydrate Metabolism -- 4.9.6 Effect of Arsenic on Lipid Metabolism -- 4.9.7 Effect of Arsenic on Protein -- 4.9.8 Effect of Arsenic on DNA -- 4.10 Future Prospects and Conclusion -- References -- Chapter 5 Arsenic-Induced Responses in Plants: Impacts on Morphological, Anatomical, and Other Quantitative and Qualitative Characters -- 5.1 Introduction -- 5.2 Impact of Arsenic on the Morphological Characters of Plants -- 5.3 Impact of Arsenic on the Anatomical Characters of Plants -- 5.4 Effect of As on stem Anatomy of Plants -- 5.4.1 Effect of Arsenic on Anatomy of Plants Roots.
5.5 Impacts of Arsenic on Quantitative Characters of Plants -- 5.5.1 Root Plasmolysis -- 5.5.2 Cell Division -- 5.5.3 Biomass -- 5.5.4 Energy Flow -- 5.5.5 Photosynthetic Pigments -- 5.6 Impact of Arsenic on the Qualitative Characters of Plants -- 5.6.1 Cellular Membrane Damage -- 5.6.2 Leaf Reflectance -- 5.6.3 Water Loss -- 5.7 Conclusion -- References -- Chapter 6 Arsenic-Induced Responses in Plants: Impacts on Biochemical Processes -- 6.1 Introduction -- 6.2 Arsenic Effect on Biochemical Process in Plants -- 6.3 Oxidative Stress on the Arsenic-Induced Plant -- 6.4 Carbohydrate Metabolism in the Arsenic-Induced Plant -- 6.5 Lipid Metabolism in the Arsenic-Induced Plant -- 6.6 Protein Metabolism in the Arsenic-Induced Plant -- 6.7 Conclusion -- References -- Chapter 7 Photosynthetic Responses of Two Salt-Tolerant Plants, Tamarix gallica and Arthrocnemum indicum Against Arsenic Stress: A Case Study -- 7.1 Introduction -- 7.2 Metal Uptake -- 7.3 Impact of Arsenic on Photosynthetic Pigments -- 7.4 Effect of Arsenic on Photosynthetic Apparatus -- 7.5 Conclusion -- References -- Chapter 8 Genomic and Transcriptional Regulation During Arsenic Stress -- 8.1 Introduction -- 8.2 Study of Differentially Regulated Genes During Arsenic Stress in Plants -- 8.3 Genetic Study of Arsenic-Responsive Genes in Plants -- 8.3.1 Genetic Study of Transporters Involved in Arsenic Uptake and Translocation -- 8.3.1.1 Transporters Involved in Arsenate Uptake in Plants -- 8.3.1.2 Transporters for AsIII Uptake in Plants -- 8.3.1.3 Genes Involved in Intracellular AsV to AsIII Conversion in Plants -- 8.3.1.4 Transporters for As Translocation -- 8.3.1.5 Genetic Study of As Detoxification Genes in Plants -- 8.4 Concluding Remarks and Future Prospects -- References -- Chapter 9 Proteomic Regulation During Arsenic Stress -- 9.1 Introduction.
9.1.1 Proteins in Antioxidative Defense Strategies -- 9.2 Molecular Chaperones in Response to Arsenic Stress -- 9.3 Participation of Protein in CO2 Assimilation and Photosynthetic Activity -- 9.4 Pathogen-Responsive Proteins (PR) in Response to Arsenic Stress -- 9.5 Participation of Proteins in Energy Metabolism -- 9.6 Possible Pan-interactomics -- 9.7 Conclusion -- References -- Chapter 10 Metabolomic Regulation During the Arsenic Stress -- 10.1 Introduction -- 10.2 Arsenic Uptake/Translocation in Plants -- 10.3 Arsenic Removal Efficiency in Plants -- 10.4 Toxicity of Arsenic on Plants Metabolism -- 10.5 Metabolome Regulation and Plants Tolerance -- 10.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 11 Role of Phytohormones in Regulating Arsenic-Induced Toxicity in Plants -- 11.1 Arsenic and Its Source -- 11.2 Uptake and Transport of Arsenic Within Plants -- 11.3 Mechanism of Arsenic Efflux by Plant Roots -- 11.4 Impact of Arsenic on Metabolism and its Toxicity in Plants -- 11.5 Phytohormones, Their Role and Interaction with Heavy Metals -- 11.6 Mechanism of Detoxification of Heavy Metals with Special Emphasis on Arsenic by Phytohormones -- 11.7 Exogenous Application of Phytohormones over Detoxification -- 11.8 Conclusion -- References -- Chapter 12 Influence of Some Chemicals in Mitigating Arsenic-Induced Toxicity in Plants -- 12.1 Introduction -- 12.2 Role of Phosphorus -- 12.3 Role of Nitric Oxide -- 12.4 Role of Hydrogen Sulfide -- 12.5 Role of Calcium -- 12.6 Role of Proline -- 12.7 Role of Phytohormones -- 12.8 Role of Selenium -- 12.9 Role of Silicon -- 12.10 Conclusion -- Author Contributions -- Acknowledgments -- References -- Chapter 13 Strategies to Reduce the Arsenic Contamination in the Soil-Plant System -- 13.1 Introduction -- 13.2 Arsenic -- 13.3 Arsenic Use in Agricultural Soils -- 13.4 Arsenic Fate in Soil.
13.5 Toxicity of Arsenic on Humans, Animals and Plants -- 13.6 Strategies to Reduce the Arsenic Contamination in the Soil-Plant System -- 13.6.1 Agricultural Management for Detoxification and Mitigation of Arsenic -- 13.6.2 Biotechnological Method -- 13.6.3 Bioremediation -- 13.7 Conclusions -- References -- Chapter 14 Arsenic Removal by Phytoremediation Techniques -- 14.1 Arsenic Presence in the Environment -- 14.2 Arsenic Contamination and its Effects on Human Health -- 14.3 Arsenic Toxicity in Plants -- 14.4 Arsenic Attenuation by Phytoremediation Technology -- 14.5 Phytoextraction -- 14.6 Arsenic Hyperaccumulation by Plants -- 14.7 Phytostabilization -- 14.8 Phytovolatilization -- 14.9 Rhizofiltration -- 14.10 Novel Approaches of Phytoremediation Technology -- 14.10.1 Using Nanotechnology -- 14.10.2 Nanoparticles in Soil -- 14.10.3 Foliar Application of Nanoparticles -- 14.10.4 Intercrops and Rotation Cultivation -- 14.10.5 Irrigation Regime Management -- 14.10.6 Soil Oxyanions Management -- References -- Chapter 15 Arsenic Removal by Electrocoagulation -- 15.1 Introduction -- 15.2 Arsenic Contamination in Natural Waters -- 15.3 Advantages and Disadvantages of Main Arsenic Removal Technologies -- 15.4 As Removal Mechanism with EC -- 15.5 Operating Parameters Affecting Arsenic Removal Through EC -- 15.6 Electrode Shape and Material -- 15.7 Solution pH -- 15.8 Effect of Applied Current -- 15.9 Optimization of EC Arsenic Removal Process -- 15.10 Cost of EC Arsenic Removal Method -- 15.11 Merits and Demerits -- 15.12 Conclusions -- References -- Chapter 16 Developments in Membrane Technologies and Ion-Exchange Methods for Arsenic Removal from Aquatic Ecosystems -- 16.1 Introduction -- 16.2 Arsenic Chemistry, Sources, and Distribution in Water -- 16.3 Health Implications of Arsenic -- 16.4 Membrane Technologies -- 16.4.1 High-Pressure Membranes.
16.4.1.1 Reverse Osmosis.
Record Nr. UNINA-9910595597103321
Srivastava Prabhat Kumar <1983->  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ethylene in plant biology / / edited by Samiksha Singh, Banaras Hindu University, Varanasi, India, Vijay Pratap Singh, C.M.P. Degree College, Prayagraj, India, Tajammul Husain, University of Allahabad, Prayagraj, India, Durgesh Kumar Tripathi, Amity University Uttar Pradesh, Noida, India, Sheo Mohan Prasad, University of Allahabad, Prayagraj, India, Nawal Kishore Dubey, Banaras Hindu University, Varanasi, India
Ethylene in plant biology / / edited by Samiksha Singh, Banaras Hindu University, Varanasi, India, Vijay Pratap Singh, C.M.P. Degree College, Prayagraj, India, Tajammul Husain, University of Allahabad, Prayagraj, India, Durgesh Kumar Tripathi, Amity University Uttar Pradesh, Noida, India, Sheo Mohan Prasad, University of Allahabad, Prayagraj, India, Nawal Kishore Dubey, Banaras Hindu University, Varanasi, India
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2023
Descrizione fisica 1 online resource (451 pages)
Disciplina 581.3
Soggetto topico Plants - Effect of ethylene on
Soggetto genere / forma Electronic books.
ISBN 9781119744696
9781119744702
9781119744689
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Ethylene Implication in Root Development -- 1.1 Ethylene and Its Role in Overall Plant Development -- 1.2 Ethylene Response Pathway in Plants -- 1.3 Root Development in Plants -- 1.3.1 Organization of Plant Root Systems -- 1.3.2 Factors Controlling Root Development -- 1.4 Ethylene-Mediated Regulation of Root Development -- 1.4.1 Ethylene and Primary Root Growth -- 1.4.2 Ethylene and Lateral Root Development -- 1.4.3 Ethylene and Root Hair Development -- 1.4.4 Ethylene and Tropic Responses of RSA -- 1.5 Conclusions and Future Perspectives -- References -- Chapter 2 Crosstalk of Ethylene and Other Phytohormones in the Regulation of Plant Development -- 2.1 Introduction -- 2.2 Ethylene in the Regulation of Plant Development -- 2.3 Ethylene Crosstalk with Other Hormones During Plant Development -- 2.3.1 Ethylene and Auxin -- 2.3.2 Ethylene and Gibberellic Acid -- 2.3.3 Ethylene and Cytokinin -- 2.3.4 Ethylene and Abscisic Acid -- 2.3.5 Ethylene and Salicylic Acid -- 2.3.6 Ethylene and Jasmonic Acid -- 2.3.7 Ethylene and Brassinosteroids -- 2.3.8 Ethylene and Strigolactones -- 2.4 Conclusion -- References -- Chapter 3 Ethylene and Regulation of Metabolites in Plants -- 3.1 Introduction -- 3.2 Importance of Metabolites in Plants -- 3.3 Influence of Ethylene on the Regulation of Plant Metabolites -- 3.3.1 Influence on Primary Metabolites -- 3.3.2 Influence on Secondary Metabolites -- 3.3.3 Terpenoids -- 3.4 Conclusion -- References -- Chapter 4 Ethylene as a Multitasking Regulator of Abscission Processes -- 4.1 Introduction -- 4.2 Ethylene as a Signal for Separation in Abscising Organs -- 4.2.1 Promotion of Organ Abscission -- 4.2.2 Developmentally Timed Abscission -- 4.2.3 Organ Separation Triggered by Exogenous Factors.
4.3 Ethylene Function in the Abscission Zone -- 4.3.1 Abscission Zone -- 4.3.2 Ethylene as a Stimulator of Abscission Zone Activity -- 4.3.3 Cell Wall Reorganization -- 4.3.4 Modifications of Redox Balance and Lipid Homeostasis -- 4.3.5 Spatial Diversity of Processes Occurring in the Abscission Zone -- 4.4 Ethylene and Hormonal Co-Workers -- 4.4.1 Abscisic Acid -- 4.4.2 Auxins -- 4.4.3 Jasmonates, Gibberellins, and Other Signaling Compounds -- 4.5 Conclusions and Future Perspectives -- References -- Chapter 5 Ethylene: : A Powerful Coordinator of Drought Responses -- 5.1 Drought as a Limiting Factor for Plant Growth and Development -- 5.2 Roots First Encounters Drought Stress -- 5.3 The Response of Aboveground Parts to Water Deficits in Soil -- 5.4 The ET-Dependent Mechanism that Plants Utilize to Cope with the Effects of Drought -- 5.5 Ethylene Interactions with Other Hormones in Drought Responses -- 5.6 Conclusions and Future Prospects -- References -- Chapter 6 Current Understanding of Ethylene and Fruit Ripening -- 6.1 Introduction -- 6.2 Ethylene and Fruit Ripening -- 6.3 Ethylene Biosynthesis in Fruits -- 6.3.1 ACC Synthase -- 6.3.2 ACC Oxidase in Fruits -- 6.4 Ethylene Perception and Signaling -- 6.5 Altered Ethylene Perception Impairs Fruit Ripening -- 6.6 Transcriptional and Epigenetic Regulation of Fruit Ripening -- 6.7 Ripening-Related Promoters -- 6.8 Genetic Manipulation of Fruit Ripening -- 6.9 Conclusions -- Acknowledgements -- References -- Chapter 7 Ethylene and ROS Crosstalk in Plant Developmental Processes -- 7.1 Introduction -- 7.1.1 Ethylene Acts as a Plant Hormone in Gaseous Form -- 7.1.2 ROS/AOS as a Signal Transduction Molecule: An Overview -- 7.2 ET Releases Seeds, Breaks Bud Dormancy, and Promotes Germination -- 7.2.1 Interaction of Ehylene and Reactive Oxygen Species (ROS) in Seed and Bud Dormancy Release and Germination.
7.3 Ethylene Regulates Cell Division and Cell Elongation -- 7.3.1 Ethylene Regulates Cell Division -- 7.3.2 Ethylene and Cell Elongation -- 7.4 Ethylene and Apical Hook Development -- 7.5 Ethylene and Hypocotyl Growth -- 7.6 Ethylene and Root Growth Development -- 7.7 Ethylene in Leaf Growth and Development -- 7.8 Ethylene Induces Epinasty and Hyponasty -- 7.9 Ethylene and Flower Development -- 7.10 Ethylene Promotes the Ripening of Some Fruits -- 7.11 Ethylene Promotes Leaf, Flower, and Fruit Abscission -- 7.12 Ethylene Induces Senescence -- 7.12.1 Ethylene in Leaf Senescence -- 7.12.2 Ethylene in Flower Senescence -- 7.12.3 Ethylene in Fruit Senescence -- 7.13 Ethylene and Cell Death -- 7.14 Concluding Remarks and Perspectives -- References -- Chapter 8 Role of Ethylene in Flower and Fruit Development -- 8.1 Introduction -- 8.2 Involvement of Ethylene in the Control of the Flowering Transition -- 8.3 Involvement of Ethylene in Flower Development -- 8.3.1 Stamen and Pollen Development -- 8.3.2 Ovary and Ovules Development -- 8.3.3 Petal Development and Flower Opening -- 8.3.4 Floral Organ Senescence and Abscission -- 8.4 Involvement of Ethylene in Sex Determination and Unisexual Flower Development -- 8.5 Involvement of Ethylene in Fruit Development -- 8.5.1 Ethylene Suppresses Fruit Set and Early Fruit Development -- 8.5.2 Ethylene Regulation of Fruit Shape -- References -- Chapter 9 Ethylene and Nutrient Regulation in Plants -- 9.1 Introduction -- 9.2 Biosynthesis and Signaling of Ethylene -- 9.3 Availability of Mineral Nutrients in Plants -- 9.4 Ethylene and Regulation of Mineral Nutrients in Plants -- 9.4.1 Macronutrients -- 9.4.2 Micronutrients -- 9.4.3 Beneficial Elements -- 9.5 Conclusion and Future Prospects -- References -- Chapter 10 Plant Metabolism Adjustment in Exogenously Applied Ethylene under Stress -- 10.1 Introduction.
10.2 Phytohormones and Stress -- 10.3 Ethylene -- 10.4 Ethylene and Stress -- 10.4.1 Salinity -- 10.4.2 Metal Toxicity -- 10.4.3 Flooding Stress -- 10.4.4 Low-Temperature Stress -- 10.4.5 High-Temperature and Humidity Stress -- 10.4.6 Mechanical Stress (Wounding) -- 10.5 Concluding Remarks -- References -- Chapter 11 Role of ET and ROS in Salt Homeostasis and Salinity Stress Tolerance and Transgenic Approaches to Making Salt-Tolerant Crops -- 11.1 Introduction -- 11.1.1 Salt Homeostasis and Salt Stress Management -- 11.1.2 ROS Homeostasis and Salt Stress Management -- 11.1.3 ET and Salt Stress Management -- 11.2 Discussion -- References -- Chapter 12 Ethylene and Phytohormone Crosstalk in Plant Defense Against Abiotic Stress -- 12.1 Introduction -- 12.2 Ethylene Biosynthesis and Signaling Pathways -- 12.3 Role of Plant Hormones in Plant Stress Responses -- 12.4 Plant Hormones Crosstalk with Ethylene in Plant Defense against Abiotic Stress -- 12.5 Conclusion and Future Directions -- References -- Chapter 13 Mechanism for Ethylene Synthesis and Homeostasis in Plants: Current Updates -- 13.1 Introduction -- 13.2 Mechanism of Ethylene Hormone Biosynthesis -- 13.2.1 Salvage Pathway -- 13.3 Regulation of the Ethylene Synthesis Pathway -- 13.4 Ethylene Hormone Homeostasis: Current Updates -- 13.4.1 Ethylene in Root Development -- 13.4.2 Ethylene in Leaf Growth and Development -- 13.4.3 Leaf Senescence -- 13.4.4 Floral Development -- 13.4.5 Floral Senescence -- 13.4.6 Fruit Senescence -- 13.4.7 Fruit Ripening -- 13.4.8 Essential Elements -- 13.5 Ethylene's Importance in Biotic and Abiotic Homeostasis -- 13.5.1 Salinity -- 13.6 ROS Scavenging Mechanisms Through Ethylene Regulation -- 13.7 ET Crosstalk -- 13.8 Conclusion -- References -- Chapter 14 Ethylene and Nitric Oxide Under Salt Stress: Exploring Regulatory Interactions -- 14.1 Introduction.
14.2 Mediation of Salt Tolerance by Ethylene and Nitric Oxide -- 14.3 Regulatory Interactions Between Ethylene and NO for Salt Tolerance -- 14.3.1 Synthesis of Ethylene and NO and Points of Interaction -- 14.3.2 Antioxidants -- 14.3.3 Osmolytes -- 14.3.4 Nutrients -- 14.3.5 Glucose -- 14.3.6 Stomatal Regulation -- 14.3.7 Ion Homeostasis -- 14.4 Conclusions -- Acknowledgment -- References -- Chapter 15 Ethylene and Metabolic Reprogramming under Abiotic Stresses -- 15.1 Introduction -- 15.2 Abiotic Stresses Change Gene Expression Patterns -- 15.2.1 Ethylene in Stress Gene Expression Response -- 15.3 Ethylene's Role in Various Abiotic Stresses -- 15.3.1 Ethylene Response to Flooding -- 15.3.2 Ethylene Response to Epinasty -- 15.3.3 Response of Ethylene to Drought Conditions -- 15.3.4 Response of Ethylene to Cold -- 15.3.5 Response of Ethylene to Salinity Stress -- 15.3.6 Response of Ethylene to Wounds -- 15.4 Conclusion -- References -- Chapter 16 Regulation of Thermotolerance Stress in Crops by Plant Growth-Promoting Rhizobacteria Through Ethylene Homeostasis -- 16.1 Introduction -- 16.2 Synthesis of Ethylene in Plant Roots and Rhizobial Inoculation -- 16.3 Basal and Acquired Thermotolerance -- 16.4 Hormone Involvement in Heat Stress -- 16.5 PGPR Influenced Ethylene Homeostasis -- 16.5.1 Biotic and Abiotic Stress Responses with ERFs and Redox Signaling -- 16.5.2 Ethylene Responses in ERFs -- 16.6 Conclusion -- Acknowledgments -- References -- Chapter 17 Ethylene: Signaling, Transgenics, and Applications in Crop Improvement -- 17.1 Introduction to Ethylene -- 17.2 Functions of Ethylene -- 17.3 Ethylene and Signal Transduction -- 17.4 Role of Ethylene Response Factors (ERFs) in Fruit Ripening -- 17.5 Ethylene Crosstalk During Ripening -- 17.6 Regulating Ethylene Signal Transduction for Agricultural and Horticultural Uses -- 17.6.1 Chemical Approach.
17.7 Gene- and Genomics-Related Approach.
Record Nr. UNINA-9910590094303321
Hoboken, NJ : , : Wiley, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant responses to soil pollution / / Pratibha Singh, Sunita Kumari Singh, Sheo Mohan Prasad, editors
Plant responses to soil pollution / / Pratibha Singh, Sunita Kumari Singh, Sheo Mohan Prasad, editors
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2020]
Descrizione fisica 1 online resource (XXI, 248 p. 27 illus., 17 illus. in color.)
Disciplina 628.55
Soggetto topico Soil pollution
ISBN 981-15-4964-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Soil Acidification and Its Impact on Plants -- Chapter 2: Challenges to Organic farming in Restoration of Degraded Land in India -- Chapter 3: Biochemical and Molecular Responses of Plants exposed to Radioactive Pollutants -- Chapter 4: Cadmium: A Threatening Agent for Plants -- Chapter 5: Effect of Soil Polluted by Heavy Metals: Effect on Plants, Bioremediation and adoptive evolution in plants -- Chapter 6: Plant Responses to Sewage Pollution -- Chapter 7: Soil Pollution caused by Agricultural Practices and Strategies to Manage Them -- Chapter 8: Inorganic Soil Contaminants and their Biological Remediation -- Chapter 9: Phytoremediation of pollutants from soil -- Chapter 10: Impacts of Soil Pollution on Human Health with Special Reference to Human Physiognomy and Physiology -- Chapter 11: Impact of Herbicide Use on Soil Microorganisms -- Chapter 12: Biological Magnification of Soil Pollutants -- Chapter 13: Soil Pollution and Human Health -- Chapter 14: Emission of Greenhouse Gases from Soil: An Assessment of Agricultural Management Practices.
Record Nr. UNINA-9910424642903321
Gateway East, Singapore : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant Responses to Xenobiotics / / edited by Anita Singh, Sheo Mohan Prasad, Rajeev Pratap Singh
Plant Responses to Xenobiotics / / edited by Anita Singh, Sheo Mohan Prasad, Rajeev Pratap Singh
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXIII, 346 p. 35 illus., 20 illus. in color.)
Disciplina 571.2
Soggetto topico Plant physiology
Pollution
Plant ecology
Oxidative stress
Cell physiology
Plant biochemistry
Plant Physiology
Pollution, general
Plant Ecology
Oxidative Stress
Cell Physiology
Plant Biochemistry
ISBN 981-10-2860-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Environmental Xenobiotics and its Effects on Natural Ecosystem -- Chapter 2. Regulation of Heavy Metals in Plant: An Overview -- Chapter 3. Xenobiotics Regulation in Higher Plants: Signaling and Detoxification -- Chapter 4. Metabolic Responses of Pesticides in Plants and their Ameliorative Processes -- Chapter 5. Assessment of Antioxidant Potential in Plants in Response to Heavy Metals -- Chapter 6. Heavy Metals and their Interaction with Physiological Processes of Plants: With Special Reference to Photosynthetic System -- Chapter 7. Impact, Metabolism and Toxicity of Heavy Metals in Plants -- Chapter 8. Heavy Metal Accumulation Potential and Tolerance in Tree and Grass Species -- Chapter 9. Microbes Mediated Management of Organic Xenobiotic Pollutants in Agricultural Lands -- Chapter 10. Metals from Mining and Metallurgical Industries and their Toxicological Impacts on Plants -- Chapter 11. The Risk Associated With the Xenobiotics Released Through Wastewater Reuse -- Chapter 12: Silver Nanoparticle in Agro-ecosystem: Applicability on Plant and Risk benefit assessment -- Chapter 13. The Significance of Plant Associated Microbial Rhizosphere for the Degradation of Xenobiotic Compounds -- Chapter 14. Biodegradable Polyhydroxyalkanoate Thermoplastics Substituting Xenobiotic Plastics: A Way Forward for Sustainable Environment.
Record Nr. UNINA-9910157631303321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui