top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biosurfactants for a sustainable future : production and applications in the environment and biomedicine. / / edited by Hemen Sarma and Majeti Narasimha Vara Prasad
Biosurfactants for a sustainable future : production and applications in the environment and biomedicine. / / edited by Hemen Sarma and Majeti Narasimha Vara Prasad
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2021
Descrizione fisica 1 online resource
Disciplina 668.1
Soggetto topico Biosurfactants
Soggetto genere / forma Electronic books.
ISBN 1-119-67105-1
1-119-67103-5
1-119-67102-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554829303321
Hoboken, NJ : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosurfactants for a sustainable future : production and applications in the environment and biomedicine. / / edited by Hemen Sarma and Majeti Narasimha Vara Prasad
Biosurfactants for a sustainable future : production and applications in the environment and biomedicine. / / edited by Hemen Sarma and Majeti Narasimha Vara Prasad
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2021
Descrizione fisica 1 online resource
Disciplina 668.1
Soggetto topico Biosurfactants
ISBN 1-119-67105-1
1-119-67103-5
1-119-67102-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910676508603321
Hoboken, NJ : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosurfactants for a sustainable future : production and applications in the environment and biomedicine. / / edited by Hemen Sarma and Majeti Narasimha Vara Prasad
Biosurfactants for a sustainable future : production and applications in the environment and biomedicine. / / edited by Hemen Sarma and Majeti Narasimha Vara Prasad
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2021
Descrizione fisica 1 online resource
Disciplina 668.1
Soggetto topico Biosurfactants
ISBN 1-119-67105-1
1-119-67103-5
1-119-67102-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910823737103321
Hoboken, NJ : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of assisted and amendment-enhanced sustainable remediation technology / / edited by Majeti N. V. Prasad
Handbook of assisted and amendment-enhanced sustainable remediation technology / / edited by Majeti N. V. Prasad
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (659 pages)
Disciplina 628.4
Soggetto topico Phytoremediation
Soil remediation
Soggetto genere / forma Electronic books.
ISBN 1-119-67038-1
1-119-67039-X
1-119-67037-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Global Scenario of Remediation and Combined Clean Biofuel Production -- Chapter 1 Global Remediation Industry and Trends -- 1.1 Introduction -- 1.1.1 Rise of Phytoremediation -- 1.1.2 The Phytoremediation Industry -- 1.1.3 The Key Players in Global Remediation and Phytoremediation -- 1.1.3.1 Markets by Sector -- 1.1.3.2 Markets by Application -- 1.1.3.3 Sizes of Market Sectors Potentially Available to Phytoremediation -- 1.2 Global -- 1.3 Mining in Latin America and Phytoremediation Possibilities -- Acknowledgements -- References -- Chapter 2 Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production -- 2.1 Introduction -- 2.2 Bioenergy: The Role of Biomass -- 2.3 Assisted Phytoremediation: Valorization of Biomass -- 2.4 Assisted Phytoremediation‐Bioenergy: An Integrated Approach -- 2.5 Conclusions -- References -- Part II Biochar‐Based Soil and Water Remediation -- Chapter 3 Biochar - Production, Properties, and Service to Environmental Protection against Toxic Metals -- 3.1 Introduction -- 3.2 How to Produce Biochar -- 3.3 Biochar Properties -- 3.4 Biochar in the Service of Environmental Protection -- 3.5 Soil Characteristics -- 3.6 Environmental Hazards Caused by Heavy Metals -- 3.7 Characteristics of Selected Heavy Metals -- 3.8 Zinc -- 3.9 Copper -- 3.10 Lead -- 3.11 Cadmium -- 3.12 Soil Pollution -- 3.13 What Is Remediation and What Is it for? -- 3.14 Improving Soil Properties -- 3.15 Removal of Impurities -- 3.16 The Addition of Biochar to Contaminated Soils may be Such a Solution -- 3.17 Summary -- References -- Chapter 4 Biochar‐based Water Treatment Systems for Clean Water Provision -- 4.1 Introduction -- 4.2 Synthesis of Biochar -- 4.2.1 Pyrolysis Process -- 4.2.2 Pyrolysis Technology -- 4.3 Biochar Properties.
4.3.1 Biochar Surface Chemistry -- 4.3.2 Pyrolysis Effect on Chemical Properties of Biochar -- 4.3.3 Pyrolysis Effect on Physical Properties of Biochar -- 4.4 Mechanism of Adsorption -- 4.4.1 Heavy Metal Removal Mechanism -- 4.4.2 Organic Contaminants Removal Mechanism -- 4.4.3 Pathogenic Organism Removal Mechanism -- 4.5 Factors Affecting Adsorption of Contaminants on Biochar -- 4.5.1 Biochar Properties -- 4.5.2 Post Treatment or Modification -- 4.5.3 Solution pH -- 4.5.4 Co‐existed Ions -- 4.5.5 Dosage of Adsorbents -- 4.5.6 Temperature -- 4.5.7 Contact Time -- 4.5.8 Initial Concentration of Pollutants -- 4.6 Biochar‐Based Water Treatment Systems -- 4.6.1 Biochar Supply -- 4.6.2 Biochar Use -- 4.6.3 Regeneration -- 4.6.3.1 Thermal Regeneration -- 4.6.3.2 Solvent Regeneration -- 4.6.3.3 Microwave Irradiation Regeneration -- 4.6.4 Supercritical Fluid Regeneration -- 4.6.5 Sustainability of Biochar Utilization -- References -- Chapter 5 Biochar for Wastewater Treatment -- 5.1 Biochar Production and Its Characteristics -- 5.2 Modification of Biochar -- 5.3 Comparison of Biochar with Activated Carbon -- 5.4 Biochar Adsorption Mechanism -- 5.5 Adsorption Kinetics of Aqueous‐Phase Organic Compounds -- 5.6 Influence of pH, Temperature, and Biochar Dose on the Adsorption Process -- 5.7 Biochar Technology in Wastewater Treatment -- 5.8 Summary -- Acknowledgment -- References -- Chapter 6 Biochar for Bioremediation of Toxic Metals -- 6.1 The Idea of Using Biochar with the Assumption of Closed Circulation -- 6.2 The Role of Biochar in Soil ‐ General Information -- 6.3 Biochar as a Sorbent - Physical and Structural Composition -- 6.4 The Role of Biochar in Removing Heavy Metals from Soil -- 6.5 Utilization of Selected Heavy Metals from Soil -- 6.6 Mechanism of Heavy Metals‐Biochar -- 6.7 Summary -- Acknowledgment -- References.
Chapter 7 Biochar Assisted Remediation of Toxic Metals and Metalloids -- 7.1 Introduction -- 7.2 Biochar and its Remarkable Physical Chemical and Biological Properties -- 7.2.1 Physical Properties of Biochar -- 7.2.1.1 Density and Porosity -- 7.2.1.2 Surface Area of Biochar -- 7.2.1.3 Pore Volume and Pore Size Distribution -- 7.2.1.4 Water Holding Capacity and Hydrophobicity -- 7.2.1.5 Mechanical Stability -- 7.2.2 Chemical Properties -- 7.2.2.1 Atomic Ratios -- 7.2.2.2 Elemental Composition -- 7.2.2.3 Energy Content -- 7.2.2.4 Fixed Carbon and Volatile Matter -- 7.2.2.5 Presence of Functional Groups -- 7.2.2.6 pH of Biochar -- 7.2.2.7 Cation Exchange Capacity -- 7.2.3 Biological Properties of Biochar -- 7.2.3.1 Biochar as a Habitat for Soil Microorganisms -- 7.2.3.2 Biochar as a Substrate for the Soil Biota -- 7.3 Heavy Metal Pollutants -- 7.4 Interactions between Biochar and Heavy Metal -- 7.4.1 Types of Interactions Occurs between Biochar and Heavy Metals -- 7.4.1.1 Direct Interaction -- 7.4.1.2 Electrostatic Attractions -- 7.4.1.3 Ion Exchange -- 7.4.1.4 Complexation -- 7.4.1.5 Precipitation -- 7.4.1.6 Sorption -- 7.4.1.7 Indirect Interactions -- 7.4.1.8 Biochar Metal Interactions -- 7.5 Biochar as a Bioremediator -- 7.5.1 Bioremediation of Heavy Metals Pollutant by the Use of Microorganism and Biochar -- 7.5.2 Bioremediation of Heavy Metal Pollutants by the Use of Plants and Biochar -- 7.5.3 Bioremediation of Heavy Metals Pollutant through the Combination of Biochar, Plant, and Microorganism -- 7.6 Application of Biochar in Bioremediation of Mining Area -- 7.6.1 Application of Biochar in Bioremediation of Acid Mine Wastes -- 7.6.2 Alkaline Tailing Soils -- 7.7 Limitation of Biochar Amended Bioremediation -- 7.7.1 Phytoextraction of Arsenic -- 7.7.2 Phytoremediation of Sewage Sludge -- 7.8 Conclusion -- References.
Chapter 8 Use of Biochar as an Amendment for Remediation of Heavy Metal‐Contaminated Soils -- 8.1 Introduction -- 8.2 Biochar Production Conditions -- 8.3 Modification to Improve Remediation Potential of Biochar -- 8.4 Mechanism of Metal Immobilization by Biochar -- 8.4.1 Direct Biochar-Heavy Metal Interaction -- 8.4.1.1 Electrostatic Attraction -- 8.4.1.2 Ion Exchange -- 8.4.1.3 Complexation -- 8.4.1.4 Precipitation -- 8.4.2 Indirect Biochar-Heavy Metals-Soils Interactions -- 8.4.2.1 Impact on Soil pH, CEC, and Organic Carbon Content, thus Metal Mobility -- 8.4.2.2 Impacts on Soil Mineral Composition and Metal Mobility by Biochar Application -- 8.5 Immobilization of Heavy Metals by Biochar -- 8.6 Application of Biochar for Immobilization of Heavy Metals and Enhancement of Plant Growth -- 8.7 Conclusions -- References -- Chapter 9 Biochars for Remediation of Recalcitrant Soils to Enhance Agronomic Performance -- 9.1 Introduction -- 9.2 Biochar Properties -- 9.2.1 Production -- 9.2.2 Properties -- 9.3 Application and Impact of Biochar on Soils -- 9.3.1 Biochar in Soil Carbon Sequestration -- 9.3.2 Influence on Soil Physical and Chemical Properties -- 9.3.3 Influence on Microbial Activity and Soil Biota -- 9.4 Conclusions -- Acknowledgment -- References -- Chapter 10 Biochar Amendment Improves Crop Production in Problematic Soils -- 10.1 Introduction -- 10.2 Roles of Biochar in Soil Improvement -- 10.2.1 Physical Characteristics -- 10.2.2 Chemical Properties -- 10.2.3 Biological Indices -- 10.3 Other Roles of Biochar -- 10.4 Agricultural Productivity in Biochar Amended Soil -- 10.4.1 Advantages of Using Biochar as a Soil Supplement -- 10.5 Reclamation of Degraded Soils Using Biochar -- 10.6 Conclusions -- References -- Part III Organic Amendments Use in Remediation.
Chapter 11 Use of Organic Amendments in Phytoremediation of Metal‐Contaminated Soils: Prospects and Challenges -- 11.1 Agricultural Organic Waste -- 11.2 Forestry By‐Products -- 11.3 Composts -- 11.4 Sewage Sludge/Biosolids -- 11.5 Humic Substances -- 11.6 Biochar -- 11.7 Constructed Organic‐Derived Soils -- 11.8 Directions for Future Research -- Acknowledgments -- References -- Chapter 12 Rice Husk and Wood Derived Charcoal for Remediation of Metal Contaminated Soil -- 12.1 Introduction -- 12.2 Heavy Metal Contamination in Soils -- 12.3 Rice Husk Ash (RHA) - Production, Characteristics, and Application -- 12.3.1 Utilization of Rice Husk Ash as Soil Amendment and Metal Removal -- 12.4 Charcoal - Production and Applications -- 12.4.1 Charcoal as Amendment and Metal Removal -- 12.5 Conclusion -- References -- Chapter 13 Enhanced Composting Using Woody Biomass and Its Application in Wasteland Reclamation -- 13.1 Introduction -- 13.2 Composting Process -- 13.3 Types of Composting -- 13.4 Woody Biomass Waste as Co‐composting Material -- 13.4.1 Usage of Woody Biochar in Composting -- 13.4.2 Woody Biochar‐Microbial Consortia -- 13.4.3 Usage of Wood Ash in Composting -- 13.4.4 Usage of Wood Derived Materials in Composting -- 13.5 Advantages and Disadvantages of Composting Woody Biomass -- 13.6 Application of Woody Biomass Compost in Restoration of Wastelands -- 13.7 Conclusion -- Acknowledgment -- References -- Chapter 14 Sewage Sludge as Soil Conditioner and Fertilizer -- 14.1 Introduction -- 14.2 Sewage Sludge from Wastewater Treatment Plants -- 14.2.1 Soil Remediation Practices -- 14.2.2 Sewage Sludge in the Remediation of Degraded Soils -- 14.2.2.1 Sewage Sludge as a Source of NPK -- 14.2.3 Substrates Produced or Based on Sewage Sludge-Biosolids -- 14.2.4 Biosolids as Fertility Restorer and Conditioner.
14.2.5 Impact of Sewage Sludge and Biosolids on Soil Microorganisms.
Record Nr. UNINA-9910555113003321
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of assisted and amendment-enhanced sustainable remediation technology / / edited by Majeti N. V. Prasad
Handbook of assisted and amendment-enhanced sustainable remediation technology / / edited by Majeti N. V. Prasad
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (659 pages)
Disciplina 628.4
Soggetto topico Phytoremediation
Soil remediation
ISBN 1-119-67038-1
1-119-67039-X
1-119-67037-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Global Scenario of Remediation and Combined Clean Biofuel Production -- Chapter 1 Global Remediation Industry and Trends -- 1.1 Introduction -- 1.1.1 Rise of Phytoremediation -- 1.1.2 The Phytoremediation Industry -- 1.1.3 The Key Players in Global Remediation and Phytoremediation -- 1.1.3.1 Markets by Sector -- 1.1.3.2 Markets by Application -- 1.1.3.3 Sizes of Market Sectors Potentially Available to Phytoremediation -- 1.2 Global -- 1.3 Mining in Latin America and Phytoremediation Possibilities -- Acknowledgements -- References -- Chapter 2 Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production -- 2.1 Introduction -- 2.2 Bioenergy: The Role of Biomass -- 2.3 Assisted Phytoremediation: Valorization of Biomass -- 2.4 Assisted Phytoremediation‐Bioenergy: An Integrated Approach -- 2.5 Conclusions -- References -- Part II Biochar‐Based Soil and Water Remediation -- Chapter 3 Biochar - Production, Properties, and Service to Environmental Protection against Toxic Metals -- 3.1 Introduction -- 3.2 How to Produce Biochar -- 3.3 Biochar Properties -- 3.4 Biochar in the Service of Environmental Protection -- 3.5 Soil Characteristics -- 3.6 Environmental Hazards Caused by Heavy Metals -- 3.7 Characteristics of Selected Heavy Metals -- 3.8 Zinc -- 3.9 Copper -- 3.10 Lead -- 3.11 Cadmium -- 3.12 Soil Pollution -- 3.13 What Is Remediation and What Is it for? -- 3.14 Improving Soil Properties -- 3.15 Removal of Impurities -- 3.16 The Addition of Biochar to Contaminated Soils may be Such a Solution -- 3.17 Summary -- References -- Chapter 4 Biochar‐based Water Treatment Systems for Clean Water Provision -- 4.1 Introduction -- 4.2 Synthesis of Biochar -- 4.2.1 Pyrolysis Process -- 4.2.2 Pyrolysis Technology -- 4.3 Biochar Properties.
4.3.1 Biochar Surface Chemistry -- 4.3.2 Pyrolysis Effect on Chemical Properties of Biochar -- 4.3.3 Pyrolysis Effect on Physical Properties of Biochar -- 4.4 Mechanism of Adsorption -- 4.4.1 Heavy Metal Removal Mechanism -- 4.4.2 Organic Contaminants Removal Mechanism -- 4.4.3 Pathogenic Organism Removal Mechanism -- 4.5 Factors Affecting Adsorption of Contaminants on Biochar -- 4.5.1 Biochar Properties -- 4.5.2 Post Treatment or Modification -- 4.5.3 Solution pH -- 4.5.4 Co‐existed Ions -- 4.5.5 Dosage of Adsorbents -- 4.5.6 Temperature -- 4.5.7 Contact Time -- 4.5.8 Initial Concentration of Pollutants -- 4.6 Biochar‐Based Water Treatment Systems -- 4.6.1 Biochar Supply -- 4.6.2 Biochar Use -- 4.6.3 Regeneration -- 4.6.3.1 Thermal Regeneration -- 4.6.3.2 Solvent Regeneration -- 4.6.3.3 Microwave Irradiation Regeneration -- 4.6.4 Supercritical Fluid Regeneration -- 4.6.5 Sustainability of Biochar Utilization -- References -- Chapter 5 Biochar for Wastewater Treatment -- 5.1 Biochar Production and Its Characteristics -- 5.2 Modification of Biochar -- 5.3 Comparison of Biochar with Activated Carbon -- 5.4 Biochar Adsorption Mechanism -- 5.5 Adsorption Kinetics of Aqueous‐Phase Organic Compounds -- 5.6 Influence of pH, Temperature, and Biochar Dose on the Adsorption Process -- 5.7 Biochar Technology in Wastewater Treatment -- 5.8 Summary -- Acknowledgment -- References -- Chapter 6 Biochar for Bioremediation of Toxic Metals -- 6.1 The Idea of Using Biochar with the Assumption of Closed Circulation -- 6.2 The Role of Biochar in Soil ‐ General Information -- 6.3 Biochar as a Sorbent - Physical and Structural Composition -- 6.4 The Role of Biochar in Removing Heavy Metals from Soil -- 6.5 Utilization of Selected Heavy Metals from Soil -- 6.6 Mechanism of Heavy Metals‐Biochar -- 6.7 Summary -- Acknowledgment -- References.
Chapter 7 Biochar Assisted Remediation of Toxic Metals and Metalloids -- 7.1 Introduction -- 7.2 Biochar and its Remarkable Physical Chemical and Biological Properties -- 7.2.1 Physical Properties of Biochar -- 7.2.1.1 Density and Porosity -- 7.2.1.2 Surface Area of Biochar -- 7.2.1.3 Pore Volume and Pore Size Distribution -- 7.2.1.4 Water Holding Capacity and Hydrophobicity -- 7.2.1.5 Mechanical Stability -- 7.2.2 Chemical Properties -- 7.2.2.1 Atomic Ratios -- 7.2.2.2 Elemental Composition -- 7.2.2.3 Energy Content -- 7.2.2.4 Fixed Carbon and Volatile Matter -- 7.2.2.5 Presence of Functional Groups -- 7.2.2.6 pH of Biochar -- 7.2.2.7 Cation Exchange Capacity -- 7.2.3 Biological Properties of Biochar -- 7.2.3.1 Biochar as a Habitat for Soil Microorganisms -- 7.2.3.2 Biochar as a Substrate for the Soil Biota -- 7.3 Heavy Metal Pollutants -- 7.4 Interactions between Biochar and Heavy Metal -- 7.4.1 Types of Interactions Occurs between Biochar and Heavy Metals -- 7.4.1.1 Direct Interaction -- 7.4.1.2 Electrostatic Attractions -- 7.4.1.3 Ion Exchange -- 7.4.1.4 Complexation -- 7.4.1.5 Precipitation -- 7.4.1.6 Sorption -- 7.4.1.7 Indirect Interactions -- 7.4.1.8 Biochar Metal Interactions -- 7.5 Biochar as a Bioremediator -- 7.5.1 Bioremediation of Heavy Metals Pollutant by the Use of Microorganism and Biochar -- 7.5.2 Bioremediation of Heavy Metal Pollutants by the Use of Plants and Biochar -- 7.5.3 Bioremediation of Heavy Metals Pollutant through the Combination of Biochar, Plant, and Microorganism -- 7.6 Application of Biochar in Bioremediation of Mining Area -- 7.6.1 Application of Biochar in Bioremediation of Acid Mine Wastes -- 7.6.2 Alkaline Tailing Soils -- 7.7 Limitation of Biochar Amended Bioremediation -- 7.7.1 Phytoextraction of Arsenic -- 7.7.2 Phytoremediation of Sewage Sludge -- 7.8 Conclusion -- References.
Chapter 8 Use of Biochar as an Amendment for Remediation of Heavy Metal‐Contaminated Soils -- 8.1 Introduction -- 8.2 Biochar Production Conditions -- 8.3 Modification to Improve Remediation Potential of Biochar -- 8.4 Mechanism of Metal Immobilization by Biochar -- 8.4.1 Direct Biochar-Heavy Metal Interaction -- 8.4.1.1 Electrostatic Attraction -- 8.4.1.2 Ion Exchange -- 8.4.1.3 Complexation -- 8.4.1.4 Precipitation -- 8.4.2 Indirect Biochar-Heavy Metals-Soils Interactions -- 8.4.2.1 Impact on Soil pH, CEC, and Organic Carbon Content, thus Metal Mobility -- 8.4.2.2 Impacts on Soil Mineral Composition and Metal Mobility by Biochar Application -- 8.5 Immobilization of Heavy Metals by Biochar -- 8.6 Application of Biochar for Immobilization of Heavy Metals and Enhancement of Plant Growth -- 8.7 Conclusions -- References -- Chapter 9 Biochars for Remediation of Recalcitrant Soils to Enhance Agronomic Performance -- 9.1 Introduction -- 9.2 Biochar Properties -- 9.2.1 Production -- 9.2.2 Properties -- 9.3 Application and Impact of Biochar on Soils -- 9.3.1 Biochar in Soil Carbon Sequestration -- 9.3.2 Influence on Soil Physical and Chemical Properties -- 9.3.3 Influence on Microbial Activity and Soil Biota -- 9.4 Conclusions -- Acknowledgment -- References -- Chapter 10 Biochar Amendment Improves Crop Production in Problematic Soils -- 10.1 Introduction -- 10.2 Roles of Biochar in Soil Improvement -- 10.2.1 Physical Characteristics -- 10.2.2 Chemical Properties -- 10.2.3 Biological Indices -- 10.3 Other Roles of Biochar -- 10.4 Agricultural Productivity in Biochar Amended Soil -- 10.4.1 Advantages of Using Biochar as a Soil Supplement -- 10.5 Reclamation of Degraded Soils Using Biochar -- 10.6 Conclusions -- References -- Part III Organic Amendments Use in Remediation.
Chapter 11 Use of Organic Amendments in Phytoremediation of Metal‐Contaminated Soils: Prospects and Challenges -- 11.1 Agricultural Organic Waste -- 11.2 Forestry By‐Products -- 11.3 Composts -- 11.4 Sewage Sludge/Biosolids -- 11.5 Humic Substances -- 11.6 Biochar -- 11.7 Constructed Organic‐Derived Soils -- 11.8 Directions for Future Research -- Acknowledgments -- References -- Chapter 12 Rice Husk and Wood Derived Charcoal for Remediation of Metal Contaminated Soil -- 12.1 Introduction -- 12.2 Heavy Metal Contamination in Soils -- 12.3 Rice Husk Ash (RHA) - Production, Characteristics, and Application -- 12.3.1 Utilization of Rice Husk Ash as Soil Amendment and Metal Removal -- 12.4 Charcoal - Production and Applications -- 12.4.1 Charcoal as Amendment and Metal Removal -- 12.5 Conclusion -- References -- Chapter 13 Enhanced Composting Using Woody Biomass and Its Application in Wasteland Reclamation -- 13.1 Introduction -- 13.2 Composting Process -- 13.3 Types of Composting -- 13.4 Woody Biomass Waste as Co‐composting Material -- 13.4.1 Usage of Woody Biochar in Composting -- 13.4.2 Woody Biochar‐Microbial Consortia -- 13.4.3 Usage of Wood Ash in Composting -- 13.4.4 Usage of Wood Derived Materials in Composting -- 13.5 Advantages and Disadvantages of Composting Woody Biomass -- 13.6 Application of Woody Biomass Compost in Restoration of Wastelands -- 13.7 Conclusion -- Acknowledgment -- References -- Chapter 14 Sewage Sludge as Soil Conditioner and Fertilizer -- 14.1 Introduction -- 14.2 Sewage Sludge from Wastewater Treatment Plants -- 14.2.1 Soil Remediation Practices -- 14.2.2 Sewage Sludge in the Remediation of Degraded Soils -- 14.2.2.1 Sewage Sludge as a Source of NPK -- 14.2.3 Substrates Produced or Based on Sewage Sludge-Biosolids -- 14.2.4 Biosolids as Fertility Restorer and Conditioner.
14.2.5 Impact of Sewage Sludge and Biosolids on Soil Microorganisms.
Record Nr. UNINA-9910677778303321
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of assisted and amendment-enhanced sustainable remediation technology / / edited by Majeti N. V. Prasad
Handbook of assisted and amendment-enhanced sustainable remediation technology / / edited by Majeti N. V. Prasad
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2021]
Descrizione fisica 1 online resource (659 pages)
Disciplina 628.4
Soggetto topico Phytoremediation
Soil remediation
ISBN 1-119-67038-1
1-119-67039-X
1-119-67037-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Part I Global Scenario of Remediation and Combined Clean Biofuel Production -- Chapter 1 Global Remediation Industry and Trends -- 1.1 Introduction -- 1.1.1 Rise of Phytoremediation -- 1.1.2 The Phytoremediation Industry -- 1.1.3 The Key Players in Global Remediation and Phytoremediation -- 1.1.3.1 Markets by Sector -- 1.1.3.2 Markets by Application -- 1.1.3.3 Sizes of Market Sectors Potentially Available to Phytoremediation -- 1.2 Global -- 1.3 Mining in Latin America and Phytoremediation Possibilities -- Acknowledgements -- References -- Chapter 2 Sustainable Valorization of Biomass: From Assisted Phytoremediation to Green Energy Production -- 2.1 Introduction -- 2.2 Bioenergy: The Role of Biomass -- 2.3 Assisted Phytoremediation: Valorization of Biomass -- 2.4 Assisted Phytoremediation‐Bioenergy: An Integrated Approach -- 2.5 Conclusions -- References -- Part II Biochar‐Based Soil and Water Remediation -- Chapter 3 Biochar - Production, Properties, and Service to Environmental Protection against Toxic Metals -- 3.1 Introduction -- 3.2 How to Produce Biochar -- 3.3 Biochar Properties -- 3.4 Biochar in the Service of Environmental Protection -- 3.5 Soil Characteristics -- 3.6 Environmental Hazards Caused by Heavy Metals -- 3.7 Characteristics of Selected Heavy Metals -- 3.8 Zinc -- 3.9 Copper -- 3.10 Lead -- 3.11 Cadmium -- 3.12 Soil Pollution -- 3.13 What Is Remediation and What Is it for? -- 3.14 Improving Soil Properties -- 3.15 Removal of Impurities -- 3.16 The Addition of Biochar to Contaminated Soils may be Such a Solution -- 3.17 Summary -- References -- Chapter 4 Biochar‐based Water Treatment Systems for Clean Water Provision -- 4.1 Introduction -- 4.2 Synthesis of Biochar -- 4.2.1 Pyrolysis Process -- 4.2.2 Pyrolysis Technology -- 4.3 Biochar Properties.
4.3.1 Biochar Surface Chemistry -- 4.3.2 Pyrolysis Effect on Chemical Properties of Biochar -- 4.3.3 Pyrolysis Effect on Physical Properties of Biochar -- 4.4 Mechanism of Adsorption -- 4.4.1 Heavy Metal Removal Mechanism -- 4.4.2 Organic Contaminants Removal Mechanism -- 4.4.3 Pathogenic Organism Removal Mechanism -- 4.5 Factors Affecting Adsorption of Contaminants on Biochar -- 4.5.1 Biochar Properties -- 4.5.2 Post Treatment or Modification -- 4.5.3 Solution pH -- 4.5.4 Co‐existed Ions -- 4.5.5 Dosage of Adsorbents -- 4.5.6 Temperature -- 4.5.7 Contact Time -- 4.5.8 Initial Concentration of Pollutants -- 4.6 Biochar‐Based Water Treatment Systems -- 4.6.1 Biochar Supply -- 4.6.2 Biochar Use -- 4.6.3 Regeneration -- 4.6.3.1 Thermal Regeneration -- 4.6.3.2 Solvent Regeneration -- 4.6.3.3 Microwave Irradiation Regeneration -- 4.6.4 Supercritical Fluid Regeneration -- 4.6.5 Sustainability of Biochar Utilization -- References -- Chapter 5 Biochar for Wastewater Treatment -- 5.1 Biochar Production and Its Characteristics -- 5.2 Modification of Biochar -- 5.3 Comparison of Biochar with Activated Carbon -- 5.4 Biochar Adsorption Mechanism -- 5.5 Adsorption Kinetics of Aqueous‐Phase Organic Compounds -- 5.6 Influence of pH, Temperature, and Biochar Dose on the Adsorption Process -- 5.7 Biochar Technology in Wastewater Treatment -- 5.8 Summary -- Acknowledgment -- References -- Chapter 6 Biochar for Bioremediation of Toxic Metals -- 6.1 The Idea of Using Biochar with the Assumption of Closed Circulation -- 6.2 The Role of Biochar in Soil ‐ General Information -- 6.3 Biochar as a Sorbent - Physical and Structural Composition -- 6.4 The Role of Biochar in Removing Heavy Metals from Soil -- 6.5 Utilization of Selected Heavy Metals from Soil -- 6.6 Mechanism of Heavy Metals‐Biochar -- 6.7 Summary -- Acknowledgment -- References.
Chapter 7 Biochar Assisted Remediation of Toxic Metals and Metalloids -- 7.1 Introduction -- 7.2 Biochar and its Remarkable Physical Chemical and Biological Properties -- 7.2.1 Physical Properties of Biochar -- 7.2.1.1 Density and Porosity -- 7.2.1.2 Surface Area of Biochar -- 7.2.1.3 Pore Volume and Pore Size Distribution -- 7.2.1.4 Water Holding Capacity and Hydrophobicity -- 7.2.1.5 Mechanical Stability -- 7.2.2 Chemical Properties -- 7.2.2.1 Atomic Ratios -- 7.2.2.2 Elemental Composition -- 7.2.2.3 Energy Content -- 7.2.2.4 Fixed Carbon and Volatile Matter -- 7.2.2.5 Presence of Functional Groups -- 7.2.2.6 pH of Biochar -- 7.2.2.7 Cation Exchange Capacity -- 7.2.3 Biological Properties of Biochar -- 7.2.3.1 Biochar as a Habitat for Soil Microorganisms -- 7.2.3.2 Biochar as a Substrate for the Soil Biota -- 7.3 Heavy Metal Pollutants -- 7.4 Interactions between Biochar and Heavy Metal -- 7.4.1 Types of Interactions Occurs between Biochar and Heavy Metals -- 7.4.1.1 Direct Interaction -- 7.4.1.2 Electrostatic Attractions -- 7.4.1.3 Ion Exchange -- 7.4.1.4 Complexation -- 7.4.1.5 Precipitation -- 7.4.1.6 Sorption -- 7.4.1.7 Indirect Interactions -- 7.4.1.8 Biochar Metal Interactions -- 7.5 Biochar as a Bioremediator -- 7.5.1 Bioremediation of Heavy Metals Pollutant by the Use of Microorganism and Biochar -- 7.5.2 Bioremediation of Heavy Metal Pollutants by the Use of Plants and Biochar -- 7.5.3 Bioremediation of Heavy Metals Pollutant through the Combination of Biochar, Plant, and Microorganism -- 7.6 Application of Biochar in Bioremediation of Mining Area -- 7.6.1 Application of Biochar in Bioremediation of Acid Mine Wastes -- 7.6.2 Alkaline Tailing Soils -- 7.7 Limitation of Biochar Amended Bioremediation -- 7.7.1 Phytoextraction of Arsenic -- 7.7.2 Phytoremediation of Sewage Sludge -- 7.8 Conclusion -- References.
Chapter 8 Use of Biochar as an Amendment for Remediation of Heavy Metal‐Contaminated Soils -- 8.1 Introduction -- 8.2 Biochar Production Conditions -- 8.3 Modification to Improve Remediation Potential of Biochar -- 8.4 Mechanism of Metal Immobilization by Biochar -- 8.4.1 Direct Biochar-Heavy Metal Interaction -- 8.4.1.1 Electrostatic Attraction -- 8.4.1.2 Ion Exchange -- 8.4.1.3 Complexation -- 8.4.1.4 Precipitation -- 8.4.2 Indirect Biochar-Heavy Metals-Soils Interactions -- 8.4.2.1 Impact on Soil pH, CEC, and Organic Carbon Content, thus Metal Mobility -- 8.4.2.2 Impacts on Soil Mineral Composition and Metal Mobility by Biochar Application -- 8.5 Immobilization of Heavy Metals by Biochar -- 8.6 Application of Biochar for Immobilization of Heavy Metals and Enhancement of Plant Growth -- 8.7 Conclusions -- References -- Chapter 9 Biochars for Remediation of Recalcitrant Soils to Enhance Agronomic Performance -- 9.1 Introduction -- 9.2 Biochar Properties -- 9.2.1 Production -- 9.2.2 Properties -- 9.3 Application and Impact of Biochar on Soils -- 9.3.1 Biochar in Soil Carbon Sequestration -- 9.3.2 Influence on Soil Physical and Chemical Properties -- 9.3.3 Influence on Microbial Activity and Soil Biota -- 9.4 Conclusions -- Acknowledgment -- References -- Chapter 10 Biochar Amendment Improves Crop Production in Problematic Soils -- 10.1 Introduction -- 10.2 Roles of Biochar in Soil Improvement -- 10.2.1 Physical Characteristics -- 10.2.2 Chemical Properties -- 10.2.3 Biological Indices -- 10.3 Other Roles of Biochar -- 10.4 Agricultural Productivity in Biochar Amended Soil -- 10.4.1 Advantages of Using Biochar as a Soil Supplement -- 10.5 Reclamation of Degraded Soils Using Biochar -- 10.6 Conclusions -- References -- Part III Organic Amendments Use in Remediation.
Chapter 11 Use of Organic Amendments in Phytoremediation of Metal‐Contaminated Soils: Prospects and Challenges -- 11.1 Agricultural Organic Waste -- 11.2 Forestry By‐Products -- 11.3 Composts -- 11.4 Sewage Sludge/Biosolids -- 11.5 Humic Substances -- 11.6 Biochar -- 11.7 Constructed Organic‐Derived Soils -- 11.8 Directions for Future Research -- Acknowledgments -- References -- Chapter 12 Rice Husk and Wood Derived Charcoal for Remediation of Metal Contaminated Soil -- 12.1 Introduction -- 12.2 Heavy Metal Contamination in Soils -- 12.3 Rice Husk Ash (RHA) - Production, Characteristics, and Application -- 12.3.1 Utilization of Rice Husk Ash as Soil Amendment and Metal Removal -- 12.4 Charcoal - Production and Applications -- 12.4.1 Charcoal as Amendment and Metal Removal -- 12.5 Conclusion -- References -- Chapter 13 Enhanced Composting Using Woody Biomass and Its Application in Wasteland Reclamation -- 13.1 Introduction -- 13.2 Composting Process -- 13.3 Types of Composting -- 13.4 Woody Biomass Waste as Co‐composting Material -- 13.4.1 Usage of Woody Biochar in Composting -- 13.4.2 Woody Biochar‐Microbial Consortia -- 13.4.3 Usage of Wood Ash in Composting -- 13.4.4 Usage of Wood Derived Materials in Composting -- 13.5 Advantages and Disadvantages of Composting Woody Biomass -- 13.6 Application of Woody Biomass Compost in Restoration of Wastelands -- 13.7 Conclusion -- Acknowledgment -- References -- Chapter 14 Sewage Sludge as Soil Conditioner and Fertilizer -- 14.1 Introduction -- 14.2 Sewage Sludge from Wastewater Treatment Plants -- 14.2.1 Soil Remediation Practices -- 14.2.2 Sewage Sludge in the Remediation of Degraded Soils -- 14.2.2.1 Sewage Sludge as a Source of NPK -- 14.2.3 Substrates Produced or Based on Sewage Sludge-Biosolids -- 14.2.4 Biosolids as Fertility Restorer and Conditioner.
14.2.5 Impact of Sewage Sludge and Biosolids on Soil Microorganisms.
Record Nr. UNINA-9910827333803321
Hoboken, New Jersey : , : Wiley, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microplastics in the ecosphere : air, water, soil, and food / / Meththika Vithanage and Majeti Narasimha Vara Prasad
Microplastics in the ecosphere : air, water, soil, and food / / Meththika Vithanage and Majeti Narasimha Vara Prasad
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons Ltd, , [2023]
Descrizione fisica 1 online resource (766 pages)
Disciplina 363.738
Soggetto topico Microplastics
Microplastics - Environmental aspects
ISBN 1-119-87953-1
1-119-87952-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Table of Contents -- Title Page -- Copyright Page -- List of Contributors -- Preface -- Section I: Single Use Plastics -- 1 Scientometric Analysis of Microplastics across the Globe -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.3 Results and Discussion -- 1.4 Conclusion -- Acknowledgments -- References -- 2 Microplastic Pollution in the Polar Oceans - A Review -- 2.1 Introduction -- 2.2 Polar Regions -- 2.3 Future Perspectives -- 2.4 Conclusions -- References -- 3 Microplastics - Global Scenario -- 3.1 Introduction -- 3.2 Environmental Issues of Plastic Waste -- 3.3 Coprocessing of Plastic Waste in Cement Kilns -- 3.4 Disposal of Plastic Waste Through Plasma Pyrolysis Technology (PPT) -- 3.5 Constraints on the Use of Plastic Waste Disposal Technologies -- 3.6 Alternate to Conventional Petro‐based Plastic Carry Bags and Films -- 3.7 Improving Waste Management -- References -- 4 The Single‐Use Plastic Pandemic in the COVID‐19 Era -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.3 Trends in Production and Consumption of SUPs during the Pandemic -- 4.4 SUP Waste from the Pandemic -- 4.5 Conclusions and Future Prospects -- References -- Section II: Microplastics in the Aerosphere -- 5 Atmospheric Microplastic Transport -- 5.1 The Phenomenon of Microplastic Transport -- 5.2 Factors Affecting Microplastic Transport -- 5.3 Microplastic Transport Modelling -- References -- 6 Microplastics in the Atmosphere and Their Human and Eco Risks -- 6.1 Introduction -- 6.2 Microplastics in the Atmosphere -- 6.3 Impact of Microplastics on Human Health and the Eco Risk -- 6.4 Strategies to Minimise Atmospheric MPs through Future Research -- 6.5 Conclusion -- Acknowledgements -- References -- 7 Sampling and Detection of Microplastics in the Atmosphere -- 7.1 Introduction -- 7.2 Classification -- 7.3 Sampling Microplastics -- 7.4 Sample Preparation.
7.5 Detection and Characterisation of MPs in the Atmosphere -- 7.6 Conclusion -- Funding -- References -- 8 Sources and Circulation of Microplastics in the Aerosphere - Atmospheric Transport of Microplastics -- 8.1 Introduction -- 8.2 Temporal and Spatial Trends in MP Accumulation -- 8.3 Formation of MPs -- 8.4 Atmospheric Circulation, Transport, Suspension, and Deposition -- 8.5 Atmospheric Chemistry of MPs -- 8.6 Predicting MP Dispersion and Transport -- 8.7 Eco‐Environmental Impacts -- 8.8 Future Perspectives -- References -- Section III: Microplastics in the Aquatic Environment -- 9 Interaction of Chemical Contaminants with Microplastics -- 9.1 Introduction -- 9.2 Interactions -- 9.3 Mechanisms -- 9.4 Environmental Burden of Microplastics -- 9.5 Future Approaches -- References -- 10 Microplastics in Freshwater Environments -- 10.1 Introduction -- 10.2 Microplastics in Rivers and Tributaries -- 10.3 Microplastics in Lakes -- 10.4 Microplastics in Groundwater Sources -- 10.5 Microplastics in Glaciers and Ice Caps -- 10.6 Microplastics in Deltas -- 10.7 Conclusion -- Acknowledgment -- References -- 11 Microplastics in Landfill Leachate: -- 11.1 Plastics and Microplastics -- 11.2 Microplastics in Landfill Leachate -- 11.3 Summary -- Acknowledgments -- References -- 12 Microplastics in the Aquatic Environment - Effects on Ocean Carbon Sequestration and Sustenance of Marine Life -- 12.1 Introduction -- 12.2 Microplastics in the Aquatic Environment -- 12.3 Microplastics and Ocean Carbon Sequestration -- 12.4 Microplastics and Marine Fauna -- 12.5 Microplastic Pollution, Climate Change, and Antibiotic Resistance - A Unique Trio -- 12.6 Conclusion and Future Perspectives -- Acknowledgments -- References -- Section IV: Microplastics in Soil Systems -- 13 Entry of Microplastics into Agroecosystems: A Serious Threat to Food Security and Human Health.
13.1 Introduction -- 13.2 Sources of Microplastics in Agroecosystems -- 13.3 Implications of Microplastic Contamination on Agroecosystems -- 13.4 Human Health Risks -- 13.5 Knowledge Gaps -- 13.6 Conclusion and Future Recommendations -- Acknowledgments -- References -- 14 Migration of Microplastic‐Bound Contaminants to Soil and Their Effects -- 14.1 Introduction -- 14.2 Microplastics as Sorbing Materials for Hazardous Chemicals -- 14.3 Types of Microplastic‐Bound Contaminants in Soils -- 14.4 Effects of Exposure and Co‐exposure in Soil - Consequences of Contaminant Sorption for MP Toxicity and Bioaccumulation -- 14.5 Microplastic‐Bound Contaminants in Soils as Potential Threats to Human Health -- 14.6 Conclusions -- References -- 15 Plastic Mulch‐Derived Microplastics in Agricultural Soil Systems -- 15.1 Plastic Mulch Films in Agriculture -- 15.2 Types of Synthetic Polymer Mulch Films -- 15.3 Weathering of Plastic Mulches and Distribution of Mulch Microplastics in Soils -- 15.4 Mulch Microplastic Pollution in Soil -- 15.5 Mulch Microplastics as a Vector -- 15.6 Challenges and Future Perspectives -- References -- 16 Critical Review of Microplastics in Soil -- 16.1 Introduction -- 16.2 Sources and Transfer of Microplastics in Soils -- 16.3 Classification, Qualification, and Quantification of Microplastics in Soil -- 16.4 Effects and Risks of Microplastics on Soil Health -- 16.5 Analytical Methodologies for Microplastics in Soil -- 16.6 Epilogue and Future Perspectives -- Acknowledgment -- References -- 17 What Do We Know About the Effects of Microplastics on Soil? -- 17.1 Introduction -- 17.2 Why and How Do MPs End Up in the Soil? -- 17.3 Microplastic Transport in Soils -- 17.4 Microplastics as Carriers of Soil Contaminants - Contaminant Vectors -- 17.5 Microplastic Effects -- 17.6 Conclusions and Perspectives for Future Research -- References.
18 Microbial Degradation of Plastics -- 18.1 Introduction -- 18.2 Diversity of Plastic‐Degrading Microbes -- 18.3 Mechanism of Microbe‐Mediated Decomposition of Plastics -- 18.4 Molecular Factors in the Microbial Breakdown of Plastics -- 18.5 Microbes and Sustainable Degradation of Plastics -- References -- 19 Microplastics and Soil Nutrient Cycling -- 19.1 Introduction -- 19.2 Microplastics in Soil -- 19.3 Effect of Microplastics on Nutrient Cycling -- 19.4 Effect of Microplastic‐Driven Factors on Soil Nutrient Cycling -- 19.5 Mechanisms of Microplastic‐Driven Plant Toxicity/Nutrient Uptake -- 19.6 Future Perspectives -- References -- Section V: Microplastics in Food Systems -- 20 Microplastics in the Food Chain -- 20.1 Introduction -- 20.2 Presence of Microplastics in the Food Chain -- 20.3 Possible Health Effects of Microplastics in Food -- 20.4 How to Minimize Microplastic Contamination in Food -- 20.5 Summary -- References -- 21 Microplastics in Salt and Drinking Water -- 21.1 Microplastics in Salt -- 21.2 Microplastics in Drinking Water -- 21.3 Summary -- References -- 22 Microplastics in Commercial Seafood (Invertebrates) and Seaweeds -- 22.1 Microplastics in Commercial Seafood and Seaweeds -- Acknowledgement -- References -- 23 Microplastic Toxicity to Humans -- 23.1 Introduction -- 23.2 Ingestion of Microplastics -- 23.3 Human Exposure to Inhalation of Microplastics -- 23.4 Human Exposure to Dermal Contact with Microplastics -- 23.5 Conclusions -- References -- Section VI: Treatment Technologies and Management -- 24 Management of Microplastics from Sources to Humans -- 24.1 Introduction -- 24.2 Classification and Sources of Microplastics -- 24.3 Impact of Microplastics on Human Health -- 24.4 Social and Ecological Impacts of Microplastics -- 24.5 Prospects in Microplastic Management -- 24.6 Summary -- References.
25 Single‐Use Ordinary Plastics vs. Bioplastics -- 25.1 Ordinary Plastic - General Characteristics -- 25.2 Bioplastics - General Characteristics -- 25.3 Biodegradability of Bioplastics -- 25.4 Selected, Innovative Methods of Bioplastic Production -- 25.5 Environmental Benefits of Using Bioplastic -- 25.6 Summary -- Acknowledgments -- References -- Section VII: Case Studies -- 26 Plastic Nurdles in Marine Environments Due to Accidental Spillage -- 26.1 Introduction -- 26.2 Presence and Sources of Plastic Nurdles in the Environment -- 26.3 Accidental Spillages of Plastic Nurdles -- 26.4X‐Press Pearl Ship Disaster - A Case Study -- References -- 27 Compost‐Hosted Microplastics - Municipal Solid Waste Compost -- 27.1 Municipal Solid Waste -- 27.2 Microplastics in Municipal Solid Waste Compost -- 27.3 Impact of Microplastic‐Contaminated Compost on Soil Properties -- 27.4 Compost‐Hosted Microplastics as a Vector -- 27.5 Future Perspectives -- References -- 28 Single‐Use Ordinary Plastics and Bioplastics - A Case Study in Brazil -- 28.1 Introduction -- 28.2 Types of Bioplastic -- 28.3 Possible Substitutions -- 28.4 The Recycling Approach -- 28.5 Energy Recovery -- 28.6 Public Policies -- 28.7 Impacts of Environmental Legislation -- 28.8 Challenges of Bioplastics Production -- 28.9 Conclusions -- References -- 29 Microplastics Remediation - Possible Perspectives for Mitigating Saline Environments -- 29.1 Introduction -- 29.2 Assimilation of Microplastics in Saline Water Bodies and Soil Ecosystems -- 29.3 Microplastic Self‐Aging and Degradation: Hopes and Risks for the Ecosystem -- 29.4 Microplastics: Technologies for Remediating Saline Environments -- 29.5 Economic and Social Aspects of Microplastic Remediation in Saline Conditions -- 29.6 Conclusion: Hopes, and Resistance to Environmental Remediation to Achieve a Cleaner Environment -- References.
30 The Management of Waste Tires: A Case Study in Brazil.
Record Nr. UNINA-9910726300803321
Hoboken, New Jersey : , : John Wiley & Sons Ltd, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
One Health : human, animal, and environment triad / / edited by Meththika Vithanage, Majeti Narasimha Vara Prasad
One Health : human, animal, and environment triad / / edited by Meththika Vithanage, Majeti Narasimha Vara Prasad
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (492 pages)
Disciplina 362.1
Soggetto topico World health
World health - Environmental aspects
Environmental health
Communicable diseases - Prevention
Zoonoses - Prevention
ISBN 1-119-86733-9
1-119-86731-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Section I One Health Approach -- Chapter 1 The Need for One Health Approach at the Recent Anthropocene -- 1.1 Anthropocene -- 1.2 Infectious Diseases: Animals to Humans -- 1.3 Emerging and Reemerging Infectious Diseases -- 1.4 Definition of One Health -- 1.5 Other Paradigms to One Health -- 1.6 One Health Fundamentals -- 1.7 International Health Regulations and Its Evaluation Mechanisms -- 1.8 Global Health Security Agenda -- 1.8.1 Zoonotic Diseases -- 1.8.2 Antimicrobial Resistance -- 1.8.3 Food Safety and Food Security -- 1.8.4 Vector-Borne Disease -- 1.8.5 Environmental Contamination -- 1.9 COVID-19 and One Health -- 1.10 Road Map for One Health -- 1.11 Challenges of One Health Approach -- Acknowledgment -- References -- Chapter 2 Emergence and Re-emergence of Emerging Infectious Diseases (EIDs): Looking at "One Health" Through the Lens of Ecology -- 2.1 Introduction -- 2.2 Emerging Infectious Diseases -- 2.3 Genesis of EIDs: Tracing from Natural History -- 2.4 Global Trends of EIDs -- 2.5 Changes in Pathogen, Vector, and Human Ecology: A Faustian Bargain for EIDs -- 2.6 Forests and Emerging Infectious Diseases: Unleashing the Beast Within -- 2.6.1 Forest-Derived Human Infections -- 2.6.1.1 Kyasanur Forest Disease -- 2.6.1.2 Nipah Virus -- 2.6.1.3 Hantavirus -- 2.6.1.4 Mycobacterium ulcerans/Buruli Ulcer -- 2.6.1.5 HIV/AIDS -- 2.6.1.6 Malaria -- 2.6.1.7 Lyme Disease -- 2.7 Humans as the Dominant Driver of Emergence and Resurgence of EIDs -- 2.8 Global Warming and EIDs -- 2.8.1 Interactions Between Climate Change and Pathogens -- 2.9 COVID-19: The Latest Avatar of the EID -- 2.10 Mitigation -- 2.11 Conclusion -- References -- Chapter 3 Environmental Interfaces for One Health -- 3.1 Environment is the Most Dynamic Component of the One Health Triad.
3.2 Anthropogenic Alteration of Natural Landscapes Reduces Biodiversity and Promotes Emergence and Spread of Infectious Diseases -- 3.3 Climate Change Modify the Behavior of Reservoir Species of Zoonotic Pathogens and the Viability of the Pathogens in the Environment -- 3.4 Urbanization Creates Novel Habitats for Adaptable Species and New Niches for Diseases -- 3.5 Antimicrobial Resistance (AMR) Is One of the Largest Threats to Global Public Health -- 3.6 Transmission Dynamics of AMR in the Environmental and Wildlife Are Less Understood, or Neglected -- 3.7 Major Anthropogenic Drivers of Zoonotic Disease Emergence Also Drives the Emergence and Spread of AMR in Environment -- 3.8 Food-Producing Environments Play a Critical Role in the Emergence and Spread of AMR -- 3.9 Wildlife Also Plays a Very Significant Role in the Ecology and Dissemination of AMR -- 3.10 AMR is Not Monitored Regularly Using Standard Methods -- 3.11 Global and National Action Plans on AMR -- References -- Chapter 4 Zoonoses: The Rising Threat to Human Health -- 4.1 What is a Zoonotic Disease? -- 4.2 Classification of Zoonotic Diseases -- 4.3 Direct Contact -- 4.4 Indirect Contact -- 4.4.1 Vector-Borne Zoonotic Diseases -- 4.4.1.1 Definition and Transmission -- 4.4.1.2 Common Examples -- 4.4.1.3 Prevention and Control -- 4.4.2 Foodborne Zoonoses -- 4.4.2.1 Definition and Transmission -- 4.4.2.2 Common Examples -- 4.4.2.3 Prevention and Control -- 4.4.3 Waterborne Zoonoses -- 4.4.3.1 Definition and Transmission -- 4.4.3.2 Common Examples -- 4.4.3.3 Control and Prevention -- 4.4.4 Airborne Zoonoses -- 4.4.4.1 Definition and Transmission -- 4.4.4.2 Common Examples -- 4.4.4.3 Control and Prevention -- 4.4.5 Zoonoses Contracted via Contaminated Soil and Surfaces -- 4.5 Who Is at Risk of Zoonoses? -- 4.6 Factors Contributing to the Emergence and Reemergence of Zoonotic Diseases.
4.7 Prevention of Zoonotic Diseases -- 4.8 One Health Initiative -- References -- Chapter 5 Microplastics in Soil and Water: Vector Behavior -- 5.1 Introduction -- 5.2 Concentrations of Inorganic Pollutants Adsorbed on Microplastics -- 5.3 Concentrations of Organic Micropollutants Adsorbed on Microplastics -- 5.4 Microplastics as Source of Plastic Additives and Decomposition Products -- 5.5 Microplastics as a Base for Microorganisms Growth -- 5.6 Conclusions -- References -- Section II Environmental Domains for One Health -- Chapter 6 Cyanotoxin in Hydrosphere and Human Interface -- 6.1 Introduction -- 6.2 Cyanobacteria and Cyanotoxins -- 6.2.1 Cyanobacteria and Cyanotoxins -- 6.2.2 Occurrence of Cyanobacteria in the Hydrosphere -- 6.2.3 Impacts of Climate Changes on Cyanobacterial Occurrence in the Hydrosphere -- 6.2.4 Impacts of Anthropogenic Activities on Cyanobacterial Occurrence in the Hydrosphere -- 6.3 Modes of Human Exposure to Cyanotoxins and Illnesses Associated with Cyanotoxins -- 6.3.1 Modes of Human Exposure to Cyanotoxins -- 6.3.2 Illnesses Associated with Cyanotoxins -- 6.3.2.1 Human Illnesses -- 6.3.2.2 Animal Intoxications -- 6.4 The Future Directions for Effective Risk Management of Toxic Cyanobacteria -- 6.5 Conclusion -- Acknowledgment -- References -- Chapter 7 Contributions to One Health Approach to Solve Geogenic Health Issues -- 7.1 Introduction -- 7.2 Medical Geology - Historical Perspective -- 7.3 Pathways of Elements in the Geoenvironment -- 7.4 The Hydrologic Cycle and One Health -- 7.5 Geology and Health - Some Examples -- 7.5.1 Fluoride -- 7.5.2 Arsenic -- 7.5.3 Uranium and Radon -- 7.6 Conclusions -- References -- Chapter 8 Disasters: Health and Environment Interphase -- 8.1 Key Terminology on Disasters -- 8.1.1 Vulnerability -- 8.1.2 Exposure -- 8.1.3 Capacity -- 8.1.4 Disaster Risk.
8.2 Effects of Disasters on Environment and Health -- 8.3 Managing Natural Disasters to Minimize Effects on Human Health -- 8.4 Shifting the Focus: Response to Disaster Risk Management -- 8.5 Resilience: A New Paradigm -- 8.5.1 Health Systems Resilience -- 8.5.2 Community Resilience -- 8.6 Areas for Future Research and Practice -- Acknowledgment -- References -- Chapter 9 Role of Microorganisms in Bioavailability of Soil Pollutants -- 9.1 Introduction -- 9.2 Soil Pollution: The Global Scenario -- 9.3 Types of Soil Pollutants -- 9.4 Emerging Pollutants -- 9.5 Fates of Soil Pollutants -- 9.6 Why Microbes? -- 9.7 Organic Soil Pollutants -- 9.7.1 Chemotaxis -- 9.7.2 Cell Surface Properties -- 9.7.3 Biosurfactants -- 9.7.4 Pesticides -- 9.7.5 Petroleum Hydrocarbons -- 9.8 Potentially Toxic Elements (Heavy Metals) -- 9.8.1 Rhizosphere Microorganisms -- 9.9 Microplastics -- 9.9.1 Nanomaterials -- 9.10 A Final Inference -- References -- Chapter 10 Per-and Polyfluoroalkyl Substances (PFAS) Migration from Water to Soil-Plant Systems, Health Risks, and Implications for Remediation -- 10.1 Introduction -- 10.2 Sources of PFAS Contamination -- 10.2.1 Aqueous Film-Forming Foams (AFFFs) -- 10.2.2 Landfill Effluents -- 10.2.3 Wastewater Effluents and Biosolids -- 10.3 Biotransformation of PFAS -- 10.4 Transportation and Occurrence of PFAS in Water Resources -- 10.4.1 PFAS in Surface Water Resources -- 10.4.2 PFAS in Groundwater -- 10.5 PFAS in Soil and Interactions -- 10.5.1 PFAS and Soil Microbiome -- 10.6 Plant Interactions and Uptake of PFAS -- 10.7 Health Risks of PFAS -- 10.8 Implications for Remediation -- 10.9 Recommendations and Future Research Directions -- References -- Chapter 11 One Health Relationships in Microbe-Human Domain -- 11.1 Microbial Domain in Human -- 11.2 Normal Bacterial Makeup of the Body -- 11.2.1 Skin Microbiota -- 11.2.2 Oral Microbiota.
11.2.3 Respiratory System Microbiota -- 11.2.4 Gut Microbiota -- 11.2.5 Urogenital Microbiota -- 11.3 How Microbiome Impact on Human Health and Homeostasis -- 11.3.1 Metabolism of Nutrients and Other Food Components -- 11.3.2 Synthesis of Essential Vitamins -- 11.3.3 Host Bile Acids and Cholesterol Metabolism -- 11.3.4 Drug Metabolism -- 11.3.5 Defense Against Pathogens -- 11.3.6 Immune Modulation -- 11.4 Factors That Influence the Microbial Domain Due to Interactions Between Humans, Animals, Plants, and Our Environment -- 11.4.1 Human Population Expansion into New Geographic Areas -- 11.4.2 Climate Changes and Anthropogenic Activities -- 11.4.3 Development of International Travel and Trade Movements -- 11.4.4 Urbanization -- 11.4.5 Chemical Pollution -- 11.5 One Health Threats -- 11.5.1 Zoonotic Diseases -- 11.5.2 Antimicrobial Resistance -- 11.5.3 Vector-Borne Diseases -- 11.6 Animals as Early Warning Signs of Potential Human Illness -- 11.7 Tools for Studying the Shared Microbiome -- 11.7.1 Sequencing Methods, Technological Advances for Studying the Microbiome -- 11.7.1.1 Marker-Based Microbiome Profiling -- 11.7.1.2 Shotgun Metagenomics -- 11.7.1.3 Metatranscriptomics, Metabolomics, and Metaproteomics -- 11.7.2 Bioinformatic Tools for Studying the Microbiome -- 11.7.2.1 Microbial Diversity Measurements -- 11.7.2.2 Functional Analysis of Microbiome -- 11.7.2.3 Statistical Analysis and Data Visualization -- 11.7.3 Systems for Studying the Microbiome -- 11.7.3.1 Considerations in Sampling the Human Microbiome -- 11.7.3.2 Culture Systems for Characterizing the Human Microbiome -- 11.7.3.3 Understanding the Human Microbiome by Using Model Organisms -- 11.7.3.4 Engineered Systems for Studying Human-Microbiome Interactions (in vitro and ex vivo Models) -- 11.8 Concluding Remarks -- References.
Chapter 12 Biomedical Waste During COVID-19: Status, Management, and Treatment.
Record Nr. UNINA-9910731596003321
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Salt stress in plants : signalling, omics and adaptations / / Parvaiz Ahmad, M.M. Azooz, M.N.V. Prasad, editors
Salt stress in plants : signalling, omics and adaptations / / Parvaiz Ahmad, M.M. Azooz, M.N.V. Prasad, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, : Springer, c2013
Descrizione fisica 1 online resource (xv, 509 pages) : illustrations (some color)
Disciplina 571.2
Altri autori (Persone) AhmadParvaiz
AzoozM. M
PrasadM. N. V <1953-> (Majeti Narasimha Vara)
Collana Gale eBooks
Soggetto topico Soil salinization
Growth (Plants)
ISBN 1-299-33686-8
1-4614-6108-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Recent Advances of Metabolomics to Reveal Plant Response During Salt Stress -- Chapter 2: MicroRNAs and Their Role in Salt Stress Response in Plants -- Chapter 3: Unravelling Salt Stress in Plants Through Proteomics -- Chapter 4: Genetic Approaches to Improve Salinity Tolerance in Plants -- Chapter 5: LEA Proteins in Salt Stress Tolerance -- Chapter 6: Enhancing Plant Productivity Under Salt Stress – Relevance of Poly-omics -- Chapter 7: Salt Stress and MAPK Signaling in Plants -- Chapter 8: ABA: Role in Plant Signaling Under Salt Stress -- Chapter 9: Calcium Signaling and Its Significance in Alleviating Salt Stress in Plants -- Chapter 10: Improving Salt Tolerance in Rice: Looking Beyond the Conventional -- Chapter 11: Approaches to Improving Salt Tolerance in Maize -- Chapter 12: The Role of Phytochromes in Stress Tolerance -- Chapter 13: Role of Arbuscular Mycorrhiza in Amelioration of Salinity -- Chapter 14: Breeding Salinity Tolerance in Citrus Using Rootstocks -- Chapter 15: Effects of Salt Stress on Photosynthesis Under Ambient and Elevated Atmospheric CO2 Concentration -- Chapter 16: Nitrogen-Use-Efficiency (NUE) in Plants Under NaCl Stress -- Chapter 17: The Responses of Salt-Affected Plants to Cadmium -- Chapter 18: Plant Tissue Culture: A Useful Measure for the Screening of Salt Tolerance in Plants.
Record Nr. UNINA-9910437609603321
New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui