Biofuel extraction techniques : biofuels, solar, and other technologies / / edited by Lalit Prasad, Subhalaxmi Pradhan, and S. N. Naik
| Biofuel extraction techniques : biofuels, solar, and other technologies / / edited by Lalit Prasad, Subhalaxmi Pradhan, and S. N. Naik |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023] |
| Descrizione fisica | 1 online resource (629 pages) |
| Disciplina | 662.88 |
| Soggetto topico | Biomass energy |
| ISBN |
1-119-82952-6
1-119-82951-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Plant Seed Oils and Their Potential for Biofuel Production in India -- 1.1 Introduction -- 1.2 Background -- 1.3 Non-Edible Oil as Feedstock for Biodiesel -- 1.3.1 Jatropha -- 1.3.2 Pongamia -- 1.3.3 Mahua -- 1.3.4 Nahor -- 1.3.5 Rubber -- 1.3.6 Lesser Explored Non-Edible Oils for Biodiesel Feedstock in India -- 1.4 Fuel Qualities -- 1.4.1 Cetane Number -- 1.4.2 Acid Value -- 1.4.3 Ester Content, Glycerides, and Glycerol -- 1.4.4 Phosphorus Content -- 1.4.5 Iodine Value -- 1.4.6 Oxidation Stability -- 1.4.7 Linolenic Acid Methyl Esters -- 1.4.8 Polyunsaturated (≥ 4 Double Bonds) Methyl Esters -- 1.5 Conclusion -- Author Contributions -- References -- Chapter 2 Processing of Feedstock in Context of Biodiesel Production -- 2.1 Introduction -- 2.2 Feedstock in Context of Biodiesel -- 2.3 Processing of Oilseeds -- 2.3.1 Pretreatment -- 2.3.2 Decortication -- 2.3.2.1 Characteristics of Oilseeds Required for Decortication -- 2.3.2.2 Decortication Method -- 2.4 Oil Extraction Methods -- 2.4.1 Aqueous Method -- 2.4.2 Hydraulic Press -- 2.4.3 Ghani (Animal or Power-Driven) -- 2.4.4 Solvent Extraction Method -- 2.4.5 Mechanical Extraction Method -- 2.4.6 Microwave Assisted Oil Extraction -- 2.4.7 Ultrasonic Assisted Oil Extraction -- 2.4.8 Supercritical Assisted Oil Extraction -- 2.5 Catalyst -- 2.5.1 Homogeneous Catalyst -- 2.5.2 Heterogeneous Catalyst -- 2.5.3 Biocatalyst -- 2.6 Production Process of Biodiesel -- 2.7 Techniques for Biodiesel Production -- 2.7.1 Catalytic Transesterification Technique -- 2.7.2 Pyrolysis -- 2.7.3 Microwave Assisted -- 2.7.4 Ultrasonic Assisted -- 2.7.5 Supercritical Assisted -- 2.8 Advantages & -- Disadvantages of Using Biodiesel -- 2.9 Current Challenges and Future Perspectives of Biodiesel -- 2.10 Summary -- References.
Chapter 3 Extraction Techniques for Biodiesel Production -- 3.1 Introduction -- 3.2 Direct Use and Blending -- 3.3 Microemulsion -- 3.4 Pyrolysis -- 3.5 Transesterification -- 3.5.1 Homogeneous Catalyzed Transesterification -- 3.5.2 Heterogeneous Catalyzed Transesterification -- 3.5.3 Enzyme Catalyzed Transesterification -- 3.5.4 Supercritical Alcohol Transesterification -- 3.6 Intensification Methods for Biodiesel Production -- 3.6.1 Ultrasonic Method -- 3.6.2 Microwave Method -- 3.6.3 Cosolvent Method -- 3.6.4 Membrane Technology -- 3.6.5 Reactive Distillation -- 3.7 Conclusions -- References -- Chapter 4 Role of Additives on Anaerobic Digestion, Biomethane Generation, and Stabilization of Process Parameters -- 4.1 Introduction -- 4.2 Anaerobic Digestion Process -- 4.3 Metallic Additives -- 4.4 Alkali Additives -- 4.5 Biological Additives -- 4.5.1 Microorganisms -- 4.5.2 Enzymes -- 4.6 Carbon-Based Additives -- 4.6.1 Graphene -- 4.6.2 Carbon Nanotubes -- 4.6.3 Activated Carbon -- 4.6.4 Biochar -- 4.7 Nanoparticles -- 4.7.1 Fe Nanoparticles -- 4.7.2 Nanoparticles of Ag and ZnO -- 4.7.3 Nanoparticles of Fe2O4 -- 4.8 Other Natural Additives -- 4.9 Conclusions -- Acknowledgment -- References -- Chapter 5 An Overview on Established and Emerging Biogas Upgradation Systems for Improving Biomethane Quality -- 5.1 Introduction -- 5.2 Available Biogas Upgradation Techniques -- 5.3 Microbial Methane Enrichment -- 5.4 Bioelectrochemical System -- 5.5 Photosynthetic Biogas Upgradation -- 5.6 Techno-Economics of Biological Biogas Upgradation Technologies -- 5.7 Conclusion -- Acknowledgement -- References -- Chapter 6 Renewable Feedstocks for Biofuels -- 6.1 Introduction -- 6.2 Sugar Containing Plant Crops -- 6.2.1 Sugar Cane (Saccharum officinarum) -- 6.2.2 Sugarbeet (Beta vulgaris L.) -- 6.2.3 Sweet Sorghum (Sorghum bicolor (L.) Moench) -- 6.3 Crops. 6.3.1 Corn (Zea mays) -- 6.3.2 CASSAVA (Manihot esculenta) -- 6.4 Oilseed -- 6.4.1 Soybean (Glycine max) -- 6.4.2 Palm (Elaeis guineensis) -- 6.4.3 Canola Oil -- 6.4.4 Sunflower Oil -- 6.4.5 Castor Oil -- 6.4.6 Cottonseed Oil -- 6.4.7 Jatropha Oil (Jatropha curcas) -- 6.4.8 Jojoba Oil -- 6.4.9 NEEM (Azadirachta indica) -- 6.5 Lignocellulosic Waste -- 6.5.1 Sugarcane Bagasse -- 6.5.2 Rice Husk -- 6.5.3 Corn Stover -- 6.5.4 Wheat Straw -- 6.6 Sea Waste -- 6.6.1 Algae Biomass and Oil -- 6.7 Liquid Waste -- 6.7.1 Vinasse -- 6.7.2 Glycerol -- 6.7.3 POME (Palm Oil Mill Effluent) -- 6.8 Conclusion -- References -- Chapter 7 Extraction Techniques of Gas.to.Liquids (GtL) Fuels -- 7.1 Introduction -- 7.2 History and Origin of Gas to Liquid Technology -- 7.3 What is Gas to Liquids (GtL) Fuel? -- 7.4 Need and Benefits from Gas to Liquid Technology -- 7.5 Extraction or Conversion Techniques of Gas to Liquid Fuels -- 7.5.1 Gas to Liquid by Direct Conversion -- 7.5.2 Gas to Liquid by Indirect Conversion -- 7.5.2.1 Natural Gas Reforming or Methane Reforming (Syngas) -- 7.5.2.2 Fischer-Tropsch (FT) Synthesis -- 7.5.2.3 Conversion -- 7.6 Advancements in Gas to Liquid Technology -- 7.7 Conclusions -- References -- Chapter 8 Second Generation Biofuels and Extraction Techniques -- List of Abbreviations -- 8.1 Introduction -- 8.2 Pre-Treatment of Lignocellulosic Biomasses -- 8.2.1 Physical Pre-Treatment Methods -- 8.2.2 Chemical Pre-Treatment Methods -- 8.2.3 Physico-Chemical Pre-Treatment Methods -- 8.2.4 Biological Pre-Treatment Methods -- 8.3 Extraction of Biofuel from Lignocellulosic Biomass -- 8.3.1 Pyrolysis -- 8.3.2 Hydrothermal Liquefaction -- 8.4 Bioethanol -- 8.4.1 Aromatic Lignocellulosic Biomass as Potential Candidate for Bioethanol -- 8.4.2 Enzymatic Saccharification -- 8.4.3 Ethanol Conversion Processes. 8.4.4 Process for the Production of Ethanol from Sugary Crops -- 8.4.5 Process for the Production of Ethanol from Starchy Crops -- 8.4.6 Process for the Production of Bioethanol from Cellulosic Biomass and Spent Aromatic Crops -- 8.4.7 Purification of Bioethanol -- 8.5 Biodiesel Production from Fatty Acids -- 8.5.1 Chemical Catalytic Process -- 8.5.1.1 Homogeneous Base-Catalysed Transesterification -- 8.5.1.2 Homogeneous Acid-Catalysed Transesterification -- 8.5.1.3 Heterogeneous Catalysts -- 8.5.1.4 Alkali Earth Metal Oxides -- 8.5.1.5 Acid/Base Zeolites -- 8.5.1.6 Heteropolyacids -- 8.5.1.7 Waste Biomass Derived Heterogeneous Catalysts -- 8.5.1.8 Heterogeneous Nanocatalysts -- 8.5.2 Biochemical Catalysts -- 8.6 Levulinic Acid (LA) -- 8.6.1 Extraction of Levulinic Acid (LA) from Waste and Lignocellulosic Biomass -- 8.7 Conclusions -- References -- Chapter 9 Bio-Alcohol: Production, Purification, and Analysis Using Analytical Techniques -- 9.1 Introduction -- 9.2 Biomethanol Extraction -- 9.2.1 Thermochemical Conversion Process -- 9.2.2 Biochemical Conversion Process -- 9.2.3 Anaerobic Digestion -- 9.3 Bioethanol Extraction -- 9.3.1 Extraction of Bioethanol from the Waste Flower (Starchy Material) -- 9.3.2 Analytical Methods for Determination of Bioethanol -- 9.3.3 Bioethanol Extraction from Sugarcane -- 9.4 Biopropanol Extraction -- 9.5 Bioglycerol Extraction -- 9.6 Bioethylene Glycol Extraction -- 9.7 Branched-Chain Bioalcohols Extraction -- 9.8 Purification of Bioalcohol -- 9.8.1 Distillation -- 9.8.2 Adsorption -- 9.8.3 Ozonation -- 9.8.4 Gas Striping -- 9.8.5 Pervaporation -- 9.8.6 Vaccum Fermentation -- 9.8.7 Solvent Extraction -- 9.9 Quantification of Bioalcohols -- 9.9.1 Gas Chromatography (GC) -- 9.9.2 High-Performance Liquid Chromatography (HPLC) -- 9.9.3 Infrared Spectroscopy (IR) -- 9.9.4 Olfactometry. 9.10 Recent Perspective of Bioalcohol Production -- 9.11 Conclusion and Future Trends of Bioalcohol -- References -- Chapter 10 Studies on Extraction Techniques of Bio-Hydrogen -- 10.1 Introduction -- 10.2 Bio-Hydrogen Production Process -- 10.2.1 Fermentation -- 10.2.1.1 Dark Fermentation -- 10.2.1.2 Photo Fermentation -- 10.2.1.3 Sequential Dark and Photo Fermentation -- 10.3 Bio-Photolysis -- 10.3.1 Direct Bio-Photolysis -- 10.3.2 Indirect Bio-Photolysis -- 10.4 Microbial Electrolysis Cell -- 10.5 Conclusion -- References -- Chapter 11 Valorization of By-Products Produced During the Extraction and Purification of Biofuels -- 11.1 Introduction -- 11.2 Biodiesel Production Process and Its Byproducts -- 11.2.1 Valorization of De-Oiled Seed Cakes -- 11.2.1.1 Valorization of De-Oiled Cake via Anaerobic Digestion Route -- 11.2.2 Valorization of Glycerol -- 11.2.2.1 Valorization of Glycerol via Anaerobic Digestion Route -- 11.2.2.2 Valorization of Glycerol via Biological Conversion Route -- 11.2.2.3 Valorization of Glycerol via Chemical Conversion Route -- 11.2.2.4 Valorization of Glycerol via Catalytic Conversion Route -- 11.2.2.5 Valorization of Glycerol via Thermochemical Conversion Route -- 11.3 Biorefinery Concept Based on Utilization of Whole Oilseed Plant -- 11.4 Valorization of Byproducts Obtained in the Bioethanol Fermentation Process -- 11.5 Valorization of Byproducts Obtained in Anaerobic Digestion Process -- 11.5.1 Valorization of CO2 Content in Biogas -- 11.5.2 Valorization of Digestate -- 11.6 Conclusion -- Acknowledgment -- References -- Chapter 12 Valorization of Byproducts Produced During Extraction and Purification of Biodiesel: A Promising Biofuel -- List of Abbreviations -- 12.1 Introduction -- 12.2 Glycerol -- 12.2.1 Properties of Glycerol -- 12.2.2 Classifications of Glycerol -- 12.2.3 Global Glycerol Market -- 12.2.4 Applications. 12.2.4.1 Conversion of Glycerol into Value-Added Product. |
| Record Nr. | UNINA-9910830560803321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Lubricants from Renewable Feedstocks
| Lubricants from Renewable Feedstocks |
| Autore | Pradhan Subhalaxmi |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (514 pages) |
| Disciplina | 621.89 |
| Altri autori (Persone) |
PrasadLalit
MadankarChandu NaikS. N |
| Soggetto topico |
Vegetable oils
Green chemistry |
| ISBN |
9781394173037
1394173032 9781394173020 1394173024 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CoverImage -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Prospectus of Renewable Resources for Lubricant Production -- Abbreviations -- 1.1 Introduction -- 1.2 History -- 1.3 Background of Biolubricants -- 1.4 Classification of Lubricants -- 1.4.1 Types of Base Oil Used -- 1.4.1.1 Synthetic Oils -- 1.4.1.2 Mineral Oil -- 1.4.1.3 Natural Oils -- 1.4.2 Physical State of Lubricant -- 1.5 Functions of a Good Lubricant -- 1.6 Renewable Sources for Biolubricant Manufacture -- 1.6.1 Jatropha Oil -- 1.6.2 Karanja Oil -- 1.6.3 Palm Oil -- 1.6.4 Rapeseed Oil -- 1.6.5 Castor Oil -- 1.6.6 Sunflower Oil -- 1.6.7 Soyabean Oil -- 1.6.8 Canola Oil -- 1.6.9 Coconut Oil -- 1.7 Physicochemical Properties of Bioderived Lubricants -- 1.7.1 Viscosity -- 1.7.2 Viscosity Index -- 1.7.3 Flash Point -- 1.7.4 Pour Point -- 1.7.5 Oxidation Stability -- 1.8 Chemical Modification of Vegetable Oils for Manufacturing Biobased Lubricants -- 1.8.1 Esterification/Transesterification -- 1.8.2 Partial/Selective Hydrogenation -- 1.8.3 Epoxidation -- 1.8.4 Estolide Formation/Oligomerization -- 1.8.5 Hydroformylation -- 1.8.6 Friedel Craft Alkylation -- 1.8.7 Ene-Reaction -- 1.8.8 Radical Addition Reaction -- 1.8.9 Acyloxylation -- 1.8.10 Metathesis -- 1.8.11 Advanced Raw Materials and Catalysts for Biolubricant Manufacture -- 1.8.11.1 Sesquiterpenes as Renewable Raw Materials for Base Oils -- 1.8.11.2 Iso-Stearic Acids -- 1.8.11.3 Enzymatic Catalyzed Biolubricants -- 1.8.11.4 Perfluoropolyalkylethers -- 1.8.11.5 Fatty Acid Isomerization Catalysts -- 1.9 Characteristics of Biobased Lubricants -- 1.9.1 Carbon Chain Length -- 1.9.2 Types of Fatty Acids -- 1.9.3 Polarity -- 1.10 Additives -- 1.10.1 Antioxidants -- 1.10.2 Detergents and Dispersants -- 1.10.3 Viscosity Modifiers -- 1.10.4 Nanoparticles -- 1.10.5 Pour Point Depressants.
1.10.6 Corrosion Inhibitors -- 1.10.7 Extreme Pressure Additives and Anti-Wear Additives -- 1.11 Biolubricant Applications -- 1.12 Biodegradability and Ecotoxicity of Biolubricants -- 1.13 New Technology Developed for Manufacture of Biolubricants Based on Renewable Resources -- 1.13.1 Waste Oil/Fats -- 1.13.2 Microalgae -- 1.13.3 Fish Oil -- 1.13.4 Genetically Modified Oils -- 1.13.5 Synthetic Esters -- 1.14 Merits and Demerits -- 1.15 Scope and Challenges -- 1.16 Conclusion -- References -- Chapter 2 Extraction of Ester-Based Biolubricants from Vegetable Oils -- 2.1 Introduction -- 2.2 Prospects of Vegetable Oils in Context of Lubricant -- 2.3 Edible Oils as Biolubricant -- 2.4 Nonedible Oils as Biolubricant -- 2.5 Physicochemical Properties of Oils to Act as Lubricant -- 2.5.1 Viscosity -- 2.5.2 Viscosity Index -- 2.5.3 Flash Point and Fire Point -- 2.5.4 Cloud Point and Pour Point -- 2.5.5 Oxidation Stability -- 2.6 Production Methodologies Involved in Ester-Based Lubricants -- 2.6.1 Base Catalyzed for Transesterification -- 2.6.2 Acid-Catalyzed Transesterification -- 2.6.3 Enzyme-Catalyzed Transesterification -- 2.7 Chemical Modification and Biodegradability of Vegetable Oils -- 2.7.1 Transesterification -- 2.7.2 Hydrogenation -- 2.7.3 Epoxidation -- 2.8 Characterization Techniques of Ester-Based Lubricants -- 2.9 Challenges and Shortcomings of Vegetable Oils as Biolubricants -- 2.10 Factors Affecting Biobased Lubricants -- 2.10.1 Free Fatty Acid Content in Vegetable Oil -- 2.10.2 Types of Alcohols -- 2.10.3 Types of Catalysts and Their Concentrations -- 2.10.4 Reaction Temperature and Rate of Reaction -- 2.10.5 Alcohol to Oil Ratio -- 2.11 Hydrolytic Stability and Low-Temperature Properties- Role of Additives or Nanomaterials in Improvement of these Properties -- 2.12 Economic and Environmental Acceptability of Ester-Based Lubricants. 2.13 Current Research and Development for Minimizing the Challenges -- 2.14 Conclusion -- References -- Chapter 3 Biobased Epoxide Lubricants -- 3.1 Introduction -- 3.2 Broad Categorization of Lubricants -- 3.2.1 Lubricating Oils or Liquid Lubricants -- 3.2.1.1 Animal and Vegetable Oils -- 3.2.1.2 Mineral or Petroleum-Based Oils -- 3.2.1.3 Blended Oils -- 3.2.2 Semisolid Lubricants or Greases -- 3.2.3 Solid Lubricants -- 3.3 Biobased Lubricants -- 3.3.1 Advantages -- 3.3.1.1 Low Toxicity -- 3.3.1.2 Spill Remediation -- 3.3.1.3 Superior Lubricity -- 3.3.1.4 Renewable and Farmer Friendly -- 3.3.2 Disadvantages -- 3.3.2.1 Oxidative Instability -- 3.3.2.2 High Pour Point -- 3.3.2.3 Price -- 3.3.2.4 Difficult to Recycle -- 3.4 Biobased Epoxide Lubricants -- 3.5 Modification and Application of Biobased Epoxy Lubricant -- 3.5.1 Biobased Epoxide-Diamine Coatings -- 3.5.2 Bio Oil as well as Biochar Loadings Over Epoxy Material -- 3.5.3 Lubricants Derived from Castor Oil's Fatty Acids with a Biobased Origin -- 3.5.4 Nanocomposites Toughened with Acrylated Epoxidized Castor Oil and Diglycidyl Ether of Bisphenol A -- 3.5.5 Passion Fruit as well as Moringa Oils and Their Epoxy-Based New Hydraulic Biolubricants -- 3.5.6 Biolubricants Originated from Enhanced Oxidation Stability of Waste Cooking Oil and Low-Temperature Properties: (2015) -- 3.5.7 Preparation and Tribological Studies of Green Lubricant Epoxidized Palm Stearin Methyl Ester -- 3.5.8 Preparation of Biolubricant Derived from Epoxy Canola Oil using Sulfated Ti-SBA-15 Catalyst -- 3.6 Physiochemical Characteristics of the Epoxide-Based Lubricants -- 3.6.1 Chemical Composition -- 3.6.2 Viscosity -- 3.6.3 Drop Point -- 3.6.4 Load-Carrying Capacity -- 3.6.5 Water Resistance -- 3.6.6 Corrosion Protection -- 3.6.7 Adhesion -- 3.6.8 Oxidation Stability -- 3.6.9 Standard for Validation. 3.7 Environmental Acceptability and Economic Importance -- 3.7.1 Environmental Acceptability -- 3.7.1.1 Renewable and Sustainable -- 3.7.1.2 Biodegradable -- 3.7.1.3 Lower Toxicity -- 3.7.2 Economic Importance -- 3.7.2.1 Energy Efficiency -- 3.7.2.2 Reduced Maintenance and Downtime -- 3.7.2.3 Market Opportunities -- 3.8 Future Prospects -- 3.9 Conclusion -- References -- Chapter 4 Biobased Hydrogenated Lubricants -- 4.1 Introduction -- 4.2 Different Types of Oil and Fats -- 4.2.1 Saturated Fats -- 4.2.2 Unsaturated Fats -- 4.2.3 Trans Fats -- 4.3 Processing Techniques for Oils and Fats -- 4.4 Microalgae Oils: Some Considerations as Lubricants -- 4.5 Hydrogenated and Hydrogenation Lubricants -- 4.5.1 Hydrogenation of Alkene -- 4.5.2 Use of Ru-Supported Catalysts for the Hydrotreatment of Waste Cooking Oil -- 4.5.3 Production of Hydrogenated Lubricants from Biomass -- 4.5.4 Factors Affecting Synthesis of Hydrogenated Lubricants -- 4.5.4.1 Feedstock Composition -- 4.5.4.2 Hydrogen Source and Pressure -- 4.5.4.3 Catalyst Type and Concentration -- 4.5.4.4 Temperature and Reaction Time -- 4.5.4.5 Posttreatment Processes -- 4.5.5 Applications of Hydrogenated Lubricants -- 4.5.5.1 Automotive Industry -- 4.5.5.2 Aerospace Industry -- 4.5.5.3 Industrial Machinery -- 4.5.5.4 Food Industry -- 4.5.5.5 Medical Industry -- 4.5.6 Industrial Application -- 4.5.6.1 Agriculture and Chemical Industries -- 4.5.6.2 Industries of Petroleum Refining -- 4.6 Lubricants -- 4.7 Types of Lubricants -- 4.7.1 Mineral Oil Lubricants -- 4.7.2 Synthetic Oil Lubricants -- 4.7.3 Biodegradable Lubricants -- 4.7.4 Vegetable Oil Lubricants -- 4.7.5 Silicone Lubricants -- 4.7.6 Grease Lubricants -- 4.7.7 Graphite Lubricants -- 4.7.8 Aqueous Lubricants -- 4.8 Biolubricant -- 4.8.1 Vegetable Oil-Based Biolubricants -- 4.8.2 Animal Fat-Based Biolubricants. 4.8.3 Synthetic Ester-Based Biolubricants -- 4.8.4 Polyalkylene Glycol (PAG)-Based Biolubricants -- 4.8.5 Water-Based Biolubricants -- 4.8.6 Biobased Hydraulic Fluids -- 4.9 Physicochemical Properties of Biolubricant and Reference Lubricant -- 4.9.1 Hydrolytic Stability -- 4.9.2 Viscosity -- 4.9.3 Thermooxidative Stability -- 4.9.4 Pour Point -- 4.9.5 Ecotoxicity -- 4.9.6 Biodegradability -- 4.9.7 Flash Point -- 4.9.8 Friction and Wear Properties -- 4.10 Catalyst -- 4.10.1 Homogeneous Catalysts -- 4.10.2 Heterogeneous Catalysts -- 4.11 Production of Biolubricant Using Conventional Catalyst -- 4.12 Transesterification of Vegetable Oils or Animal Fats -- 4.13 The Used Oil as Biolubricants -- 4.14 Using Additives to Enhance the Lubricant's Qualities -- 4.15 Applications -- 4.15.1 Food Processing -- 4.15.2 Marine Industry -- 4.15.3 Wind Turbines -- 4.15.4 Automotive Industry -- 4.15.5 Aerospace Industry -- 4.16 Use of Vegetable Oil without Modification -- 4.17 Reaction Pathways for Preparation of Biolubricants -- 4.18 Modifications -- 4.19 Production of Biolubricants -- 4.20 Biolubricants and the Environment -- 4.21 National Policy on Biofuels (2022 Amendment) -- 4.21.1 The National Policy on Biofuels has Undergone Significant Modifications, which have been Approved -- 4.21.2 Key Aspects of the Biofuels National Policy -- 4.21.3 Standards of Excellence and Ongoing Development for Biofuels -- 4.22 COVID-19 Impact on Biolubricants -- 4.22.1 Recent Development -- 4.22.2 Market Analysis and Size -- 4.22.3 Insights on the Market for Biolubricants -- 4.22.4 Segmentation and Market Scope -- 4.23 Conclusion -- 4.24 Future Prospects -- References -- Chapter 5 Microbial-Based Biolubricants -- Abbreviations -- 5.1 Introduction -- 5.2 Developmental Methods for Microbial-Based Biolubricants -- 5.2.1 Microbial Feasibility for Biolubricant Production. 5.2.2 Biolubricant Production by Esterification and Transesterification Processes. |
| Record Nr. | UNINA-9911019653903321 |
Pradhan Subhalaxmi
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanolubricants : Generation and Applications
| Nanolubricants : Generation and Applications |
| Autore | Yusuf Mohd |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (276 pages) |
| Disciplina | 620.115 |
| Altri autori (Persone) |
PrasadLalit
KhanShafat Ahmad |
| Soggetto topico |
Nanotechnology
Lubrication and lubricants |
| ISBN |
9781119865698
1119865697 9781119865681 1119865689 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 An Insight into Nanolubrication and Nanolubricants -- 1.1 Introduction -- 1.2 Advantages of Nanolubricants -- 1.3 Preparation of Nanolubricants -- 1.3.1 Methods of Nanolubricant Preparation -- 1.3.2 Types of Nanolubricants Based on Additives' Characteristics -- 1.4 Lubrication Mechanism -- 1.5 Tribological and Thermophysical Properties of Nanolubricants -- 1.5.1 Tribological Properties -- 1.5.2 Thermophysical Properties -- 1.6 Conclusion and Future Directions -- References -- Chapter 2 Nanolubrication Chemistry and Its Application -- 2.1 Introduction -- 2.2 Nanolubrication and Its Requirements -- 2.3 Synthesis of Nanoparticles -- 2.3.1 Physical Method -- 2.3.2 Chemical Methods -- 2.3.3 Biological Methods -- 2.4 Preparation of Nanofluids/Nanolubricants -- 2.4.1 One-Step Method -- 2.4.2 Two-Step Method -- 2.4.2.1 Disadvantages of the Two-Step Method -- 2.4.3 Dispersion of Nanoparticles in Lubricating Oils -- 2.4.4 Interaction Forces in a Nanofluids/Nanolubricant System -- 2.4.4.1 Van der Waals Forces -- 2.4.4.2 Electrostatic or Electric Double Layer Force (EDL) -- 2.4.4.3 DLVO Theory -- 2.4.4.4 Capillary Forces -- 2.5 Mechanism of Nanolubrication -- 2.6 Nanoparticle Properties Necessary for Nanolubrication -- 2.6.1 Nanolubricating Film Properties -- 2.6.2 Nanoparticles in Nanolubricants -- 2.7 Advantages of Nanolubricants -- 2.8 Nanoparticles Ability to Boost Grease Performance -- 2.9 Tribological Performance of Nanolubricants -- 2.9.1 Mechanical Properties of a Tribological System -- 2.9.2 Physicochemical Properties of the Lubricant -- 2.10 Nanolubricants and Base Oils -- 2.10.1 Nanolubricants -- 2.10.2 Base Oils -- 2.11 Various Types of Nanoparticles as Lubricant Additives -- 2.11.1 Metal Oxides -- 2.11.2 Metal Sulfides -- 2.11.3 Carbon-Based Nanoparticles.
2.11.4 Nanocomposites -- 2.11.5 Rare Earth Compounds -- 2.12 Recent Advancement in Nanolubrication -- 2.13 Conclusion and Future Outlook -- References -- Chapter 3 Characterization Techniques for Nanolubricants Using Different Approaches -- 3.1 Introduction -- 3.2 Nanoparticles as an Additive to Nanolubricants -- 3.3 Application of Nanolubricants -- 3.4 Preparation of Nanolubricants -- 3.5 Characterization Factors of Nanolubricants -- 3.6 Characterization Techniques Used for Nanolubricants -- 3.6.1 Morphology and Topography Analysis -- 3.6.1.1 Dynamic Light Scattering (DLS): Particle Size Analysis -- 3.6.1.2 Electron Microscopy -- 3.6.1.3 X-Ray Diffraction -- 3.6.1.4 Atomic Force Microscopy -- 3.6.1.5 UV-Visible Spectroscopy -- 3.6.1.6 Fourier-Transform Infrared Spectroscopy (FTIR) -- 3.6.1.7 Raman Spectroscopy -- 3.7 Conclusion -- References -- Chapter 4 Metal-Based Nanolubricants: Current and Future Perspectives -- 4.1 Introduction -- 4.2 Synthesis Mechanism of NPs -- 4.2.1 Top-Down Methods -- 4.2.1.1 Ball Milling -- 4.2.1.2 Electrospinning -- 4.2.1.3 Lithography -- 4.2.1.4 Sputter Deposition -- 4.2.1.5 Pulsed Laser Deposition -- 4.2.2 Bottom-Up Approaches -- 4.2.2.1 Chemical Vapor Deposition (CVD) -- 4.2.2.2 Hydrothermal/Solvothermal Methods -- 4.2.2.3 Sol-Gel Method -- 4.2.2.4 Co-Precipitation -- 4.3 NPs as Potential Candidate for Lubricant Additive -- 4.3.1 Nanometal-Based Lubricant Additives -- 4.3.2 Coefficient of Friction (COF) and Anti-Wear Properties of Nanolubricants -- 4.3.3 Lubrication Mechanisms -- 4.3.4 Rolling Effect or Ball-Bearing Effect -- 4.3.5 Protective Film Formation -- 4.3.6 Mending Effect -- 4.3.7 Polishing Effect -- 4.3.8 Surface Modified NP for Nanolubrication -- 4.4 Methods to Enhance Dispersion Stability of Nanolubricants -- 4.4.1 Physical Method -- 4.4.2 Use of Surfactant -- 4.4.3 Stability by Modification on Surface. 4.4.4 Metal-Based Nanolubricants -- 4.4.5 Transition Metal Dichalcogenides (TMDCs)-Based Nanolubricants -- 4.6 Conclusion -- References -- Chapter 5 Transition Metal-Based Catalysts for Preparing Biomass-Based Lubricating Oils -- 5.1 Introduction -- 5.2 Synthesis of Biolubricants -- 5.2.1 Esterification -- 5.2.2 Transesterification -- 5.2.3 Hydrogenation -- 5.2.4 Simultaneous Hydrogenation-Esterification -- 5.3 Catalysts for Biolubricant Synthesis -- 5.3.1 Catalysts for Esterification -- 5.3.2 Catalysts for Transesterification Reaction -- 5.4 Conclusions -- References -- Chapter 6 Effect of Integration of Nanostructured Semimetals on Lubrication Performance of Non-Edible Vegetable Oil-Based Biolubricants -- 6.1 Introduction -- 6.2 Lubrication and Lubricating Materials -- 6.3 Inedible Vegetable Oils-Based Biolubricants -- 6.3.1 Resources -- 6.3.2 Properties -- 6.3.3 Merits and Demerits of Vegetable Oil-Based Lubricants -- 6.4 Nanoparticle Additives to Enhance Tribological Performance of Non-Edible Vegetable Oil Lubricants -- 6.4.1 Tribological Performance-Based Categorization of Nanoparticles -- 6.4.2 Effect of Nanoparticle Dispersion Stability, Shape, Size, Surface, Concentration, and Kind of Tribo-Test on the Tribological Performance -- 6.4.2.1 Dispersion Stability -- 6.4.2.2 Shape of Nanoparticles -- 6.4.2.3 Size of Nanoparticles -- 6.4.2.4 Surface Functionalization -- 6.4.2.5 Nanoparticles Concentration -- 6.4.2.6 Nature of Tribo-Testing -- 6.5 Tribological Mechanisms of Nanoparticles -- 6.5.1 Ball-Bearing Effect -- 6.5.2 Protective Film Formation -- 6.5.3 Mending Effect or Self-Healing Effect -- 6.5.4 Polishing Effect -- 6.5.5 Semimetal-Based Nano-Biolubricants -- 6.5.6 Boron-Based Nanoadditives in Non-Edible Vegetable Oils-Based Lubricants -- 6.6 Conclusion -- References. Chapter 7 Zinc Oxide Nanomaterials-Synthesis, Characterization, and Applications Focused on Lubricating Behavior -- 7.1 Introduction -- 7.2 Preparations -- 7.2.1 Synthesis of ZnO by Pulsed Laser Ablation Technique -- 7.2.2 Synthesis of ZnO by Chemical Vapor Deposition Method -- 7.2.3 Synthesis of ZnO by Anodization Method -- 7.2.4 Synthesis of ZnO by Electrophoretic Deposition Process -- 7.2.5 Hydrothermal Process for the Synthesis of ZnO -- 7.2.6 Synthesis of ZnO by Electrochemical Deposition Method -- 7.2.7 Preparation of ZnO by Using the Sol-Gel Technique -- 7.2.8 Synthesis of ZnO by Thermolysis Method -- 7.2.9 Synthesis of ZnO by Combustion Method -- 7.2.10 Synthesis of ZnO by Ultrasonic Method -- 7.2.11 Microwave-Assisted Combustion Method to Synthesize Zinc Oxide -- 7.2.12 Synthesis of ZnO by Co-Precipitation Method -- 7.2.13 Synthesis of ZnO by Green Synthesis Method -- 7.3 Characterization -- 7.4 Applications -- References -- Chapter 8 Improvement in the Properties of Biodegradable Nanolubricants -- 8.1 Introduction -- 8.1.1 Why Biodegradable Lubricants? -- 8.1.2 Vegetable Oil-Based Lubricants -- 8.1.3 Synthetic Lubricants -- 8.1.4 Properties and Synthesis of Nanolubricants -- 8.2 Nanoparticles for Lubricants -- 8.3 Types of Biodegradable Nanolubricants -- 8.3.1 Vegetable Oil as a Biodegradable Lubricant -- 8.3.2 Additives-Based Biodegradable Nanolubricants -- 8.3.3 Water-Based Nanolubricants -- 8.4 Conclusion and Outlook -- References -- Chapter 9 Nanodimensional Metal-/Metal Oxide.Incorporated Vegetable Oil-Based Biodegradable Lubricants: Environmental Benefits, Progress, and Challenges -- 9.1 Introduction -- 9.2 Concept of Lubrication and Characteristics of a Lubricant -- 9.2.1 Friction -- 9.2.2 Wear -- 9.2.3 Lubrication Regimes -- 9.2.4 Characteristics of a Lubricant -- 9.3 Vegetable Oil-Based Biolubricants. 9.3.1 Limitations of Vegetable Oils (VOs) as Lubricants -- 9.3.1.1 Auto-Oxidation -- 9.3.1.2 Photo-Oxidation of VOs -- 9.3.1.3 Thermal Oxidation of Vegetable Oils -- 9.4 Nanolubricants -- 9.4.1 Mending Mechanism -- 9.4.2 Rolling/Ball-Bearing Mechanism -- 9.4.3 Formation of Protective Films -- 9.4.4 Polishing -- 9.4.5 Types of Nanoadditives -- 9.4.6 Vegetable Oil Metal/Metal Oxide-Based Nanolubricants -- 9.5 Challenges for Sustainable Bio-Nanolubrication -- 9.6 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911019463003321 |
Yusuf Mohd
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||