Advanced Materials and Manufacturing Techniques for Biomedical Applications
| Advanced Materials and Manufacturing Techniques for Biomedical Applications |
| Autore | Prasad Arbind |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (458 pages) |
| Altri autori (Persone) |
KumarAshwani
GuptaManoj PrasadArbind |
| ISBN |
1-394-16696-6
1-394-16698-2 1-394-16697-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 12.4 Conclusion and Future Directions. |
| Record Nr. | UNINA-9910830708403321 |
Prasad Arbind
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Materials and Manufacturing Techniques for Biomedical Applications
| Advanced Materials and Manufacturing Techniques for Biomedical Applications |
| Autore | Prasad Arbind |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (458 pages) |
| Disciplina | 610.28 |
| Altri autori (Persone) |
KumarAshwani
GuptaManoj PrasadArbind |
| Soggetto topico |
Biomedical materials
Tissue engineering |
| ISBN |
9781394166961
1394166966 9781394166985 1394166982 9781394166978 1394166974 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Section I: Advanced Materials for Biomedical Applications -- Chapter 1 Introduction to Next-Generation Materials for Biomedical Applications -- 1.1 Introduction -- 1.2 Advanced Functional Materials -- 1.3 Market and Requirement of Next-Generation Materials -- 1.4 Metals and Polymeric Biomaterials -- 1.5 Bioabsorbable Biomaterials -- 1.6 Processing of Bioabsorbable Polymeric Biomaterials -- 1.7 Application of Next-Generation Materials in Biomedical Applications -- 1.8 Latest Status of Next Generation Materials in Biomedical Applications -- 1.8.1 Bioabsorbable Devices for Bone Tissue Engineering -- 1.9 Bioresorbable Devices for Skin Tissue Engineering -- 1.10 Challenges and Perspectives -- 1.11 Conclusion -- References -- Chapter 2 Advanced Materials for Surgical Tools and Biomedical Implants -- 2.1 Introduction -- 2.2 Application of Bioengineering to Healthcare -- 2.3 Application in Musculoskeletal and Orthopedic Medicines -- 2.4 Application as a Disposable Medical Device -- 2.5 Application as an Implantable Biosensor -- 2.6 Conclusions -- References -- Chapter 3 Insights into Multifunctional Smart Hydrogels in Wound Healing Applications -- 3.1 Introduction -- 3.2 Architecture of Fabricated Hydrogels -- 3.3 Bactericidal Effect on Wound Repair -- 3.3.1 Historical Perspective -- 3.3.2 Microbial Influence on Wound Healing -- 3.3.3 Wound Tissue Healing Strategies: Case Study -- 3.3.4 Degradation of Wound Healing Factors -- 3.3.5 pH and Wound Healing: Impact of Bacteria -- 3.4 New Frontiers of Hydrogels in Wound Dressing Applications -- 3.4.1 Hemostatic Hydrogel as Wound Dressing -- 3.4.2 Anti-Oxidant and Anti-Inflammatory Hydrogel Wound Dressing -- 3.4.3 Antibacterial Hydrogel Wound Healing -- 3.4.4 Self-Healing Hydrogel Wound Dressing.
3.4.5 Conductive Hydrogel Wound Dressing for Wound Monitoring -- 3.4.6 Chronic Wound Dressing -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Natural Resource-Based Nanobiomaterials: A Sustainable Material for Biomedical Applications -- 4.1 Introduction -- 4.2 Natural Resource-Based Biopolymer -- 4.2.1 Cellulose -- 4.2.2 Lignin -- 4.2.3 Starch -- 4.2.4 Chitosan -- 4.2.5 Silk -- 4.3 Extraction of Nature Resource-Based Nanomaterials -- 4.3.1 Extraction of Cellulose-Based Nanostructures -- 4.3.2 Extraction of Lignin-Based Nanostructures -- 4.3.3 Extraction of Starch-Based Nanostructures -- 4.3.4 Extraction of Chitosan-Based Nanostructures -- 4.3.5 Extraction of Silk Nanostructures -- 4.4 Biomedical Applications of Nature Resource-Based Nanomaterials and Their Nanobiocomposites -- 4.4.1 Nanocellulose in Biomedical Application -- 4.4.2 Nanolignin in Biomedical Application -- 4.4.3 Nanostarch in Biomedical Application -- 4.4.4 Nanochitosan in Biomedical Application -- 4.4.5 Nanosilk in Biomedical Application -- 4.5 Other Applications -- References -- Chapter 5 Biodegradable Magnesium Composites for Orthopedic Applications -- 5.1 Introduction -- 5.1.1 Biomaterials for Bone Implants -- 5.1.2 Magnesium: A Smart Material -- 5.1.3 Materials and Methods -- 5.1.4 Design Requirements for Mg-Based Composites -- 5.1.5 Types of Reinforcements -- 5.2 Materials and Methods -- 5.2.1 Powder Processing Route -- 5.2.2 Casting Route -- 5.3 Results and Discussion -- 5.3.1 Biodegradation Study -- 5.3.2 Biocompatibility -- 5.3.3 In Vivo Assessment of the Nanocomposites for Tissue Compatibility -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 New Frontiers of Bioinspired Polymer Nanocomposite for Biomedical Applications -- 6.1 Introduction -- 6.1.1 Polymers Used in Biomedical Applications -- 6.1.2 Graphene-Polymer Nanocomposites. 6.2 Methods to Prepare Graphene-Based Polymer Nanocomposites -- 6.3 Magnetic Material - Polymer Nanocomposites -- 6.3.1 Organization of Magnetic Polymer Nanocomposites -- 6.3.2 Residues and Suspensions -- 6.3.3 Tridimensional Solids -- 6.3.4 High-Permeability Materials for the Microwave -- 6.3.5 Piezoelectric Materials -- 6.3.6 Multifunctional Materials -- 6.3.6.1 Transparent Magnetic Materials -- 6.3.6.2 Luminescent Magnetic Materials -- 6.4 Nanostructured Composites -- 6.5 Conclusion and Future Trends -- References -- Chapter 7 Nanohydroxyapatite-Based Composite Materials and Processing -- 7.1 Introduction -- 7.2 Biomaterials -- 7.3 Types of Biomaterials -- 7.3.1 Polymers -- 7.3.2 Composites -- 7.4 Structure of Hydroxyapatite -- 7.5 Nanohydroxyapatite -- 7.5.1 Nanohydroxyapatite/Polymer Composite -- 7.5.2 Nanohydroxyapatite/Poly (Vinyl Alcohol) Composite -- 7.5.3 Nanohydroxyapatite/Sodium Alginate Composite -- 7.5.4 Nanohydroxyapatite/Chitosan Composite -- 7.5.5 Nanohydroxyapatite/Gelatin Composite -- 7.5.6 Nanohydroxyapatite/Chitosan-Gelatin Composite -- 7.5.7 Nanohydroxyapatite-Polylactic Acid Nanocomposites -- 7.6 Cancer Detection and Cell Imaging -- 7.6.1 Size and Morphology -- 7.7 Conclusion -- References -- Chapter 8 Self-Healing Materials and Hydrogel for Biomedical Application -- 8.1 Introduction -- 8.2 Self-Healing Hydrogels -- 8.3 Mechanism of Self-Healing in Hydrogels -- 8.3.1 Physically Cross-Linked Self-Healing Hydrogels -- 8.3.1.1 Hydrogen Bonding -- 8.3.1.2 Ionic Interactions -- 8.3.1.3 Host-Guest Interactions -- 8.3.1.4 Hydrophobic Interactions -- 8.3.2 Chemically Self-Healing Hydrogels -- 8.3.2.1 Imine Bond -- 8.3.2.2 Diel-Alder Reaction -- 8.3.2.3 Disulphide Bond -- 8.3.2.4 Boronate-Diol Complexation -- 8.4 Application of Self-Healing Hydrogel in Biomedical Application -- 8.4.1 Drug Delivery -- 8.4.2 Tissue Engineering Application. 8.4.2.1 Wound Healing -- 8.4.2.2 Neural Tissue Engineering -- 8.4.2.3 Bone Tissue Engineering -- 8.5 Conclusion and Future Prospects -- References -- Section II: Advanced Manufacturing Techniques for Biomedical Applications -- Chapter 9 Biomimetic and Bioinspired Composite Processing for Biomedical Applications -- 9.1 Introduction -- 9.2 Synthesis of Biomimetic and Bioinspired Composite -- 9.2.1 3D (Three-Dimensional) Printing -- 9.2.2 Synthesis of Bioinspired Nanomaterials -- 9.3 Biomaterials for Biomedical Applications -- 9.3.1 Biomaterials-Based Cell Therapy -- 9.3.2 Biomaterials for Cancer Diagnostics -- 9.3.3 Biomaterials for Vaccine Development -- 9.4 Bioinspired Materials -- 9.4.1 One-Dimensional Bioinspired Material -- 9.4.2 Two-Dimensional (2D) Bioinspired Materials -- 9.4.3 Three Dimensional (3D) Bioinspired Materials -- 9.5 Biomimetic Drug Delivery Systems -- 9.5.1 Cell Membrane-Based Drug Delivery System -- 9.5.2 Lipoprotein-Based Drug Delivery System -- 9.6 Artificial Organs -- 9.6.1 Artificial Kidney -- 9.6.2 Artificial Liver -- 9.6.3 Artificial Pancreas -- 9.6.4 Artificial Lung -- 9.7 Neuroprosthetics -- 9.7.1 Sensory Prosthetics -- 9.7.1.1 Auditory Prosthetics -- 9.7.1.2 Visual Prosthetics -- 9.7.2 Motor Prosthetics -- 9.7.3 Cognitive Prosthetics -- 9.8 Conclusion -- References -- Chapter 10 3D Printing in Drug Delivery and Healthcare -- 10.1 Introduction -- 10.2 3D Printing in Healthcare Technologies -- 10.3 Four Dimensions Printing (4D) -- 10.4 Transformation Process and Materials -- 10.4.1 3D Bioprinting -- 10.4.1.1 Bioinks -- 10.4.2 Bioceramics -- 10.4.3 Synthetic Biopolymers -- 10.5 3D Printing's Pharmaceutical Potentials -- 10.5.1 Personalization -- 10.5.2 Personalized Therapy -- 10.6 Drug Administration Routes -- 10.6.1 Transdermal Route -- 10.6.2 Ocular Route -- 10.6.3 Rectal and Vaginal Routes. 10.6.4 Pulmonary Drug Delivery -- 10.7 Custom Design 3D Printed Pharmaceuticals -- 10.8 Excipient Selection for 3D Printing Custom Designs -- 10.9 Customized Medicating of Drugs -- 10.10 Devices for Personalized Topical Treatment -- 10.10.1 Oral Solid Dosage Forms -- 10.10.2 Semisolid Extrusion (EXT) and Inkjet Printing -- 10.10.3 Stencil Printing -- 10.10.4 Implants -- 10.10.5 Tissue Engineering -- 10.10.6 Regenerative Medicine -- 10.10.7 Scaffoldings -- 10.10.8 Organ Printing -- 10.11 Conclusion -- References -- Chapter 11 3D Printing in Biomedical Applications: Techniques and Emerging Trends -- 11.1 Introduction -- 11.2 3D Printing Technologies -- 11.2.1 Digital Model -- 11.2.2 Inkjet-Based 3D Printing -- 11.2.3 Extrusion-Based 3D Printing -- 11.2.4 Laser-Based 3D Printing -- 11.2.5 Bioplotting -- 11.2.6 Fused Deposition Modeling (FDM) -- 11.3 Materials for 3D Printing -- 11.3.1 Hydrogel -- 11.3.2 Polymers (Melt Cured) -- 11.3.3 Metallic Substances -- 11.3.4 Ceramic Substances -- 11.3.5 Living Cells -- 11.4 Biomedical Applications: Recent Trends of 3D-Printing -- 11.4.1 Skin -- 11.4.2 Bone and Dentistry -- 11.4.3 Tissue -- 11.4.4 Drug Delivery -- 11.4.5 Other Applications -- 11.5 Challenges and Opportunities -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 Self-Sustained Nanobiomaterials: Innovative Materials for Biomedical Applications -- 12.1 Introduction -- 12.1.1 Classification of Nanobiomaterials -- 12.1.2 Composition -- 12.1.3 Dimensionality -- 12.1.4 Morphology -- 12.2 Nanobiomaterials Applications -- 12.2.1 Drug Deliverance -- 12.2.2 Oncology -- 12.2.3 Diagnostics -- 12.2.4 Application in Tissue Engineering -- 12.2.5 Antifouling and Antimicrobial Nanobiomaterials -- 12.3 Challenge in the Clinical Rendition of Nanobiomaterials -- 12.3.1 Nanotoxicity -- 12.3.2 Regulatory Considerations -- 12.3.3 Commercialization. 12.4 Conclusion and Future Directions. |
| Record Nr. | UNINA-9911019889203321 |
Prasad Arbind
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sustainable Mobility : Policies, Challenges and Advancements
| Sustainable Mobility : Policies, Challenges and Advancements |
| Autore | Kumar Ashwani |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (324 pages) |
| Disciplina | 388 |
| Altri autori (Persone) |
PrasadArbind
KumarGaurav |
| Soggetto topico |
Sustainable transportation
Electric vehicles |
| ISBN |
9781394166831
1394166834 9781394166824 1394166826 9781394166817 1394166818 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Aim and Scope -- Preface -- Acknowledgement -- Chapter 1 Sustainable Mobility: Clean Energy Integration with Electric Vehicle Technology -- 1.1 Introduction -- 1.2 Transportation and Carbon Emission -- 1.3 Transportation Electrification -- 1.4 Electric Vehicle Integration with Renewable Sources -- 1.5 Solar Energy -- 1.6 Wind Energy -- 1.7 Integration with the Grid -- 1.8 State-of-the-Art Methods -- 1.9 Opportunities and Challenges -- 1.10 Conclusion -- Acknowledgement -- References -- Chapter 2 Sustainable Mobility Policies in Developed and Developing Countries -- 2.1 Introduction -- 2.2 Pollution by Air and Effect of Greenhouse Gases -- 2.3 Promotion of Cycling and Walking -- 2.4 Sustainable Trade and Global Governance -- 2.4.1 Socioeconomic Impacts -- 2.4.2 Technology Aspects -- 2.4.3 Role of Smart Connectivity in Sustainable Mobility -- 2.5 Discussion -- 2.6 Conclusion -- References -- Chapter 3 Transitions from IC Engine to EV and HEV: Current Status of EV in India -- 3.1 Introduction -- 3.2 Changing Electric Vehicles Trend -- 3.3 Case Study: Maruti Suzuki and EV Market -- 3.4 Numerous Downsides to Electric Cars -- 3.4.1 Ultra Expensive -- 3.4.2 Transport Not a Considerable Contributor to Emissions -- 3.4.3 Batteries as the Major Emitter -- 3.4.4 Need of Societal Change -- 3.5 Zero Emissions is a Myth -- 3.6 Prolonged Charging Time -- 3.7 Carbon Footprints -- 3.8 Degrading Battery Performance from Fast Charging -- 3.9 Underdeveloped Charging Infrastructure -- 3.10 Impractical for Inner-City Inhabitants and Lack of Resale Value -- 3.11 Reasons Behind Slow Adoption of Electric Vehicles in India -- 3.12 Conclusion -- References -- Chapter 4 Alternative Source Systems of In-Vehicle Electricity Production -- 4.1 Introduction -- 4.2 Electric Vehicles (EVs).
4.3 Passenger Electric Vehicle -- 4.3.1 Plug-In Battery Electric Vehicle (PBEV) -- 4.3.2 Plug-In Hybrid Electric Vehicle (PHEV) -- 4.3.3 Hybrid Electric Vehicles (HEV) -- 4.3.4 Commercial Electric Vehicle -- 4.3.4.1 Plug-In Battery Electric Vehicles -- 4.3.4.2 Plug-In Hybrid Electric Vehicles -- 4.3.4.3 Hydraulic Hybrid Electric Vehicle -- 4.4 Integration of Different Renewable Energy Resources with Power System of In-Vehicle Electricity Production -- 4.4.1 Fuel Cell Electric Vehicles (FCEVs) -- 4.4.2 Electric Vehicle Integration with Wind Energy -- 4.4.3 Electric Vehicle Integration with Solar Energy -- 4.4.4 Distribution Grid Management with Electrical Network -- 4.5 Factors Affecting Adoption of Alternative Fuel Vehicles -- 4.6 Conclusion on Market Penetration of Alternative Fuel Vehicles -- References -- Chapter 5 Autonomous Navigation of Unmanned Aerial Vehicle Using Reinforcement Learning -- 5.1 Introduction -- 5.2 Literature Review -- 5.3 Technology Used -- 5.3.1 System Architecture Overview -- 5.3.2 Reinforcement Learning and Control -- 5.3.3 Elements of Reinforcement Learning -- 5.4 Markov Decision Process (MDP) -- 5.4.1 Value Function and Action-Value Function -- 5.4.2 Q-Learning Algorithm -- 5.4.3 SARSA Algorithm -- 5.4.4 Robot Operating System (ROS) -- 5.5 Implementation: Flow of the Project Flow -- 5.6 Controller Design of Unmanned Aerial Vehicle (UAV) -- 5.6.1 Controller Design -- 5.6.2 Training Procedure of UAV -- 5.7 Results and Discussion -- 5.7.1 Experimental Results -- 5.8 Conclusion and Future Scope -- References -- Chapter 6 IoT-Based Automatic Vehicle Accident & -- Rash Driving Alert System -- 6.1 Introduction -- 6.2 Problem and Necessity -- 6.3 Need for the System -- 6.3.1 IoT Architecture -- 6.3.2 Sonar Sensor -- 6.3.3 Data Processing and Analysis -- 6.4 User Interface and Reporting -- 6.4.1 Results and Impact. 6.4.2 Challenges and Limitations -- 6.4.3 Future Enhancements -- 6.4.4 Architectural Design of the Work -- 6.6 Implementation: Tools for Controlling & -- Processing -- 6.7 Hardware Setup -- 6.7.1 Result -- 6.7.2 Conclusion -- 6.8 Applications -- Bibliography -- Chapter 7 Mobile Edge Communication, Computing and Caching (MEC3) in Vehicle Communication -- 7.1 Introduction to MEC3 in Vehicle Communication -- 7.2 What is Mobile EDGE? -- 7.2.1 Advantages of Mobile EDGE Computing -- 7.3 Mobile Edge Communication (MEC) -- 7.3.1 How We Can Use MEC -- 7.3.2 Opportunities in Mobile Edge Computing -- 7.3.3 Challenges of Mobile Edge Computing -- 7.3.4 Mobile Edge Computing Uses -- 7.3.5 Multi-Access vs. Mobile Edge Computing -- 7.3.6 Mobile Edge Computing Importance -- 7.4 Mobile Edge Caching -- 7.4.1 The Architecture of Mobile Edge Caching -- 7.5 Technology Description -- 7.5.1 Advantages and Disadvantages of MEC3 -- 7.6 Applications of MEC3 -- 7.7 Conclusion -- Bibliography -- Chapter 8 IoT-Based Automatic Vehicle Tracking and Accident Alert System -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Methodology -- 8.4 Programming Code -- 8.5 Results and Discussion -- 8.6 Conclusion and Future Scope -- Bibliography -- Chapter 9 Interfacing of GPS and GSM with the Help of NodeMCU for Vehicle Monitoring and Tracking -- 9.1 Introduction -- 9.2 Problem Statement -- 9.3 Literature Review -- 9.4 Monitoring and Tracking of Vehicles -- 9.5 Result and Discussion -- 9.6 Conclusion -- References -- Chapter 10 A Comprehensive Analysis of Cell Balancing in BMS for Electric Vehicle -- 10.1 Introduction -- 10.2 Cell Balancing Methods -- 10.2.1 Passive Cell Balancing -- 10.2.1.1 Proposed Block Diagram of Passive Cell Balancing -- 10.2.2 Active Cell Balancing -- 10.3 Proposed Topology -- 10.3.1 Working Modes for Two Cells -- 10.3.2 Algorithm for Two Cells Balancing. 10.3.2.1 Block Diagram of Proposed Active Cell Balancing for Two Cell -- 10.3.3 SOC-Voltage-Based Inductive Buck Boost Active Cell Balancing -- 10.4 Conclusion -- References -- Chapter 11 Analyzing and Testing of Fuel Cell Hybrid Electric Vehicles -- 11.1 Introduction -- 11.2 Battery Management System -- 11.2.1 Classification -- 11.2.2 Challenges of Fuel Cell Hybrid Electric Vehicles -- 11.3 System Setup -- 11.3.1 Block Diagram -- 11.3.2 Components -- 11.3.3 System Methodology -- 11.4 Simulations -- 11.4.1 Efficiency and Continuous Torque Capability -- 11.4.2 National Renewable Energy Laboratory (NREL) -- 11.4.3 Output Graphs -- 11.5 Conclusion -- References -- Chapter 12 Cyberattacks, Threats and Challenges of Cybersecurity: An Outline -- 12.1 Introduction -- 12.2 Background Work -- 12.3 Security Properties and CIA Triad -- 12.3.1 Confidentiality -- 12.3.2 Integrity -- 12.3.3 Availability -- 12.4 Types of Cyber Threats -- 12.4.1 Cybercrime -- 12.4.2 Cyber Terrorism -- 12.4.3 Cyber Warfare -- 12.5 Types of Cyberattacks -- 12.5.1 Denial of Service -- 12.5.2 Trojan Horse -- 12.5.3 Malware -- 12.5.4 SQL Injection Attack -- 12.5.5 Man-in-the-Middle -- 12.5.6 Reconnaissance Attack -- 12.6 Challenges in Cybersecurity -- 12.6.1 Cybersecurity Challenges in Education -- 12.6.2 Cybersecurity Challenges in Smart Grid -- 12.6.3 Cybersecurity Challenges in IoT and Cloud Computing -- 12.6.4 Cybersecurity Challenges in Connected Home Ecosystem -- 12.7 Bibliometric Analysis and Discussion -- 12.8 Conclusion -- References -- Chapter 13 Opportunities and Challenges of Data-Driven Cybersecurity for Smart Cities: Blockchain-Driven Approach -- 13.1 Introduction -- 13.2 Background Work -- 13.3 Attacks on the Layers of IoT-Enabled Smart City -- 13.4 Issues and Challenges in Smart Cities -- 13.5 Blockchain and its Types -- 13.6 Smart City Issues with Blockchain. 13.7 Conclusion -- References -- Chapter 14 On Renewable Energy Source Selection Problem Using T-Spherical Fuzzy Soft Dombi Aggregation Operators -- 14.1 Introduction -- 14.2 Preliminaries -- 14.3 T-Spherical Fuzzy Soft Dombi Aggregation Operators -- 14.4 Application of T-Spherical Fuzzy Soft Dombi Aggregation Operators in Renewable Energy Source Selection -- 14.5 Conclusion and Scope for Future Work -- References -- Chapter 15 Detection of Weather with Hypothesis Testing Performed Through VGG19 Model Utilizing Adam Optimizer -- 15.1 Introduction -- 15.2 Literature -- 15.3 Input Dataset -- 15.4 Data Validation -- 15.5 Weather Classification Using VGG19 Model -- 15.6 Results -- 15.6.1 Weather Classification Using VGG19 Model on Adam Optimizer -- 15.6.2 Classification Output of Dataset Parameters After Model Optimization -- 15.6.3 Confusion Matrix Comparison of Dataset Parameters -- 15.7 Conclusion -- References -- Chapter 16 Enhanced Ride-Through Capability of a Hybrid Microgrid Under Symmetric and Asymmetric Faults -- 16.1 Introduction -- 16.2 Design of the Hybrid Microgrid -- 16.2.1 AC Bus Faults - LG, LL, LLG, LLLG, LLL -- 16.2.2 DC Bus Faults: Pole to Ground, Pole to Ground and Pole to Pole Fault -- 16.3 HMG Inverter Control -- 16.3.1 Problem Formulation -- 16.4 Grid-Tied Inverter Control -- 16.5 Fault Analysis -- 16.5.1 LG Fault (A-G) -- 16.6 LLG Fault (A-B-G) -- 16.7 LL Fault (A-B) -- 16.8 LLL and LLLG Faults -- 16.9 DC Bus Fault -- 16.10 Conclusion -- Acknowledgements -- References -- About the Editors -- Index -- EULA. |
| Record Nr. | UNINA-9911019233303321 |
Kumar Ashwani
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||