CTH analyses of fragment penetration through heat sink fins [[electronic resource] /] / by Anand Prakash |
Autore | Prakash Anand |
Pubbl/distr/stampa | Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2005] |
Descrizione fisica | 1 online resource (vi, 21 pages) : color illustrations |
Collana | ARL-TR |
Soggetto topico |
Shock waves - Mathematical models
Penetration mechanics |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910697027403321 |
Prakash Anand | ||
Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2005] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonthermal Food Processing, Safety, and Preservation |
Autore | Prakash Anand |
Edizione | [1st ed.] |
Pubbl/distr/stampa | John Wiley & Sons, Inc, 2024 |
Descrizione fisica | 1 online resource (539 pages) |
Altri autori (Persone) | KuilaArindam |
ISBN |
1-394-18662-2
1-394-18663-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Selected Physical Properties of Processed Food Products and Biological Materials -- 1.1 Introduction -- 1.2 Physical Properties -- 1.2.1 Shape -- 1.2.2 Texture -- 1.2.3 Crystalline Structure and Amorphous State -- 1.2.4 Flavor -- 1.2.5 Color -- 1.2.6 Thickening -- 1.2.7 Water Activity -- 1.2.8 Porosity -- 1.2.9 Measurement -- 1.3 Physical Analysis Methods in the Food Industry -- 1.3.1 Techniques for Nondestructive Physical Methods -- 1.3.2 Techniques for Mechanical Impact Assessment -- 1.3.3 Emerging Techniques of Measurement of Firmness -- 1.3.4 Techniques for Crispness Measurement -- 1.3.5 Techniques to Measure Porosity -- 1.3.6 Technique to Measure Glass Transition -- 1.3.7 Techniques to Measure Thickness -- 1.4 Conclusion -- References -- Chapter 2 Mathematical Modeling and Simulation-Computer-Aided Food Engineering -- 2.1 Introduction -- 2.2 The Necessity of Modeling and Simulation in Computer-Aided Food Engineering -- 2.3 Different Types of Mathematical Modeling Applied in the Food Industry -- 2.3.1 Mechanistic Modeling -- 2.3.2 Multiphase Modeling -- 2.3.3 Multiscale Modeling -- 2.3.4 Process-Based Modeling -- 2.3.5 Biochemical Modeling -- 2.3.6 Multiframe Modeling -- 2.4 The Call for Modeling Frameworks in the Food Industry -- 2.5 Case Studies in Modeling -- 2.5.1 Case Studies in Potato Crisps (Chips) Production -- 2.5.1.1 Making a Resolution -- 2.5.1.2 The Negative Closed-Loop System-Imitated Trials -- 2.5.2 Initial Soybean-Related Drying Procedure and Storage Conditions and Influences on Physicochemical Grain Quality Studied with the Help of Mathematical Modeling and Multivariate Analysis -- 2.5.2.1 Quality of Stored Soybeans -- 2.5.2.2 Multivariate Analysis -- 2.5.3 Conclusion -- 2.6 Simulators and Their Synergy with Food Industry Models.
2.6.1 Applications of Simulation Software in Food Plants -- 2.7 Relevant Simulators Used in Food Packaging -- 2.7.1 Vacuum Cooling of Food Products -- 2.7.2 Microwave Drying -- 2.8 Challenges Faced by Present-Day Models -- 2.9 Summary -- References -- Chapter 3 Dietary Diversification and Biofortification: An Attempt at Strengthening Food Security -- 3.1 Introduction -- 3.2 Dietary Diversification -- 3.2.1 Underutilized Crops -- 3.2.2 A Few Parameters for Better Implementation of Food Diversity -- 3.3 Supplementation -- 3.3.1 Impact of Food Supplementation -- 3.4 Food Fortification -- 3.4.1 Need for Food Fortification -- 3.4.2 Standards for Effective Food Fortification -- 3.4.3 Types of Food Fortification -- 3.4.4 Foods that are Generally Fortified -- 3.5 Biofortification -- 3.5.1 Methods of Biofortifying Crops -- 3.5.1.1 Agronomic Approaches -- 3.5.1.2 Plant Breeding -- 3.5.1.3 Genetic Engineering -- 3.5.2 Examples of Biofortified Crops -- 3.5.3 Enhancement of Nutritional Value in Different Staple Crops by Biofortification -- 3.6 Inference -- References -- Chapter 4 Emerging Sensors, Sensing Technology in the Food and Beverage Industry -- 4.1 Introduction -- 4.2 Sensing Technologies in Food Analysis: Overcoming Challenges for Swift and Reliable Quality Assessment -- 4.3 Sensors -- 4.3.1 Types of Sensors -- 4.3.2 Benzene in Soft Drinks -- 4.3.3 Nitrosamine -- 4.4 Applications -- 4.4.1 Tea Biosensor -- 4.4.2 Biosensor for Ascorbic Acid Analysis -- 4.5 Summary -- References -- Chapter 5 Modern Luminescent Technologies Embraced in Food Science and Engineering -- 5.1 Introduction -- 5.2 Basic Principle of Luminescence -- 5.2.1 Different Categories of Luminescence -- 5.2.2 Luminophores -- 5.2.3 Types of Luminophores -- 5.2.4 Sensor/Probes -- 5.2.5 Recent Luminescent Technologies -- 5.2.6 Excitation-Emission Matrix Fluorescence Spectroscopy. 5.2.7 Hyperspectral Imaging -- 5.2.8 Time Resolved Fluorescence Microscopy -- 5.2.9 Super Resolution Fluorescence Microscopy -- 5.2.10 Other Techniques -- 5.2.11 Applications of Luminescence Techniques -- 5.2.12 Food Quality and Safety -- 5.2.13 Food Matrix Studies -- 5.2.14 Food Packaging -- 5.3 Conclusion -- References -- Chapter 6 Combining Different Thermal and Nonthermal Processing by Hurdle Technology -- 6.1 Introduction -- 6.1.1 Examples of Hurdle Effect -- 6.2 Combinations of Different Thermal and Nonthermal Processing by Hurdle Technology -- 6.2.1 Pasteurization and Sterilization -- 6.2.2 Dielectric Heating -- 6.2.3 Infrared Heating -- 6.2.4 Ozone Processing -- 6.2.5 Ionizing Radiation -- 6.2.6 High-Pressure Processing -- 6.2.7 High-Intensity Ultrasound -- 6.2.8 Pulsed Electric Field -- 6.3 Conclusion -- References -- Chapter 7 Ultrasonication, Pulsed Electric Fields, and High Hydrostatic Pressure: Most Discussed Nonthermal Technologies -- 7.1 Introduction -- 7.2 High Hydrostatic Pressure -- 7.2.1 Process -- 7.2.2 Factors Affecting -- 7.2.3 Advantages -- 7.2.4 Applications -- 7.3 Ultrasonication -- 7.3.1 Process -- 7.3.2 Factors Affecting -- 7.3.3 Advantages -- 7.3.4 Application -- 7.4 Pulsed Electric Field -- 7.4.1 Process -- 7.4.2 Factors Affecting -- 7.4.3 Advantages -- 7.4.4 Applications -- 7.5 Conclusion -- References -- Chapter 8 Dietary Diversification, Supplementation, Biofortification, and Food Fortification -- 8.1 Introduction -- 8.2 Changing Patterns of Diet (Dietary Diversification) -- 8.3 Dietary Diversification and Functional Outcomes -- 8.3.1 Child Growth -- 8.3.2 Cognition Ability -- 8.3.3 Gut Health -- 8.3.4 Preeclampsia -- 8.4 Food Collaborations to Improve the Bioavailability of Micronutrients -- 8.4.1 Bioavailability of Iron -- 8.4.2 Bioavailability of Provitamin A -- 8.4.3 Bioavailability of Zinc. 8.5 Malnutrition Tendencies -- 8.6 Need for Nutritional Supplements -- 8.7 A Balanced Diet and Dietary Supplements -- 8.8 Formulating Supplements -- 8.9 Categorization of Supplements -- 8.10 Malnutrition and Its Impact -- 8.11 Biofortification -- 8.12 Mineral Trace Element Biofortification for the Human Diet -- 8.12.1 Implementing Biofortification -- 8.13 Recent Status of Biofortified Crops -- 8.13.1 Provitamin A OSP -- 8.13.2 Provitamin A Yellow Cassava -- 8.13.3 Provitamin A Orange Maize -- 8.13.3.1 Zinc Rice -- 8.13.3.2 Iron Crops -- 8.14 Food Fortification -- 8.15 The Efficiency of Food Fortification as a Public Health Intervention -- 8.16 Consumer Awareness and Communications -- 8.17 Conclusion -- References -- Chapter 9 Role of Nanotechnology in Food Processing -- 9.1 Introduction -- 9.2 Role of Nanotechnology in Food Science -- 9.3 Nonthermal Methods of Preparing Food Ultrasonication -- 9.3.1 Cold Plasma Technology -- 9.3.1.1 Plasma Science -- 9.3.1.2 Plasma Technology -- 9.3.1.3 Types of Plasma -- 9.3.1.4 Plasma Sources -- 9.3.1.5 Types of Cold Plasma Systems -- 9.3.2 Supercritical Technology -- 9.4 Various Technologies in Nanopackaging -- 9.4.1 Nano-Based Antimicrobial Packaging -- 9.4.2 Nano Biodegradable Packaging -- 9.4.3 Chemical Release Nanopackaging -- 9.5 Food Packaging Containing Nanomaterials -- 9.5.1 Improved Food Packaging -- 9.5.2 Active Packaging -- 9.5.3 Intelligent Packaging -- 9.5.4 Bio-Based Packaging -- 9.6 Safety Issues in Food Nanotechnology -- 9.7 Nanoparticles in Food Packaging: Toxicological Aspects -- 9.8 Conclusion -- References -- Chapter 10 Effect of High-Pressure Processing on the Functionality of Food Starches-A Review -- 10.1 Introduction -- 10.2 Starch and Its Modification -- 10.3 High-Pressure Processing -- 10.3.1 Gelatinization and Retrogradation -- 10.3.2 Physiochemical Modification of HPP-Treated Starch. 10.3.3 Starch-Based Hydrogels -- 10.3.4 Influence of HPP on Starch Digestibility and Texture -- 10.3.5 Crystallinity of Starches -- 10.3.6 Granule Morphology and Swelling -- 10.3.7 Water Absorption Studies -- 10.4 Application of HPP in Enhancing Resistant Starch Content -- Conclusion -- References -- Chapter 11 Separation, Extraction, and Concentration Processes in the Food and Beverage Processing -- 11.1 Introduction -- 11.2 Processing Techniques for Beverages -- 11.2.1 Fruit Beverages and Drinks -- 11.2.2 Alcoholic Beverages -- 11.2.3 Fermentative Production of Ethanol from Yeast -- 11.2.4 General Aspects of Production of Alcoholic Beverages -- 11.2.5 Fermentative Approach for the Production of Beer -- 11.2.6 Different Varieties of Beer -- 11.2.7 Fermentation of Wine Production -- 11.2.8 Different Varieties of Wine -- 11.2.9 Processing Technologies for Wine -- 11.2.9.1 Separation of Alcohol and Water -- 11.2.9.2 Use Fractionating Column Within the Flask's Mouth -- 11.2.9.3 Condensation Process for Steam -- 11.2.9.4 Freezing Process for Separation of Alcohol -- 11.2.9.5 Storage of Alcoholic Beverage in Big Container -- 11.2.9.6 Removal of Container with the Frozen Substance -- 11.2.9.7 "Salting Out" Phenomenon for Separation of Alcohol from Water -- 11.3 Extraction Methods for Liquid Food Samples -- 11.3.1 Supercritical Fluid Extraction Process -- 11.3.2 Liquid-Liquid Extraction -- 11.3.3 Solid-Phase Extraction -- 11.3.4 Solid-Phase Microextraction -- 11.3.5 Bioreactor Design for Extraction of Solids Using SCF -- 11.3.5.1 Shake Flask Extraction -- 11.3.5.2 Soxhlet Extraction -- 11.3.5.3 QuEChERS Methodology -- 11.3.5.4 Ultrasound-Assisted Extraction -- 11.3.5.5 Microwave-Assisted Extraction -- 11.3.5.6 Supercritical Fluid Extraction -- 11.3.5.7 Accelerated Solvent Extraction -- 11.3.6 Extraction of Volatile Compounds -- 11.3.7 Applications. 11.4 Conclusion. |
Record Nr. | UNINA-9910877078303321 |
Prakash Anand | ||
John Wiley & Sons, Inc, 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|