top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
IoT Sensors, ML, AI and XAI: Empowering A Smarter World / / edited by Biswajeet Pradhan, Subhas Mukhopadhyay
IoT Sensors, ML, AI and XAI: Empowering A Smarter World / / edited by Biswajeet Pradhan, Subhas Mukhopadhyay
Autore Pradhan Biswajeet
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (479 pages)
Disciplina 629.8
Altri autori (Persone) MukhopadhyaySubhas
Collana Smart Sensors, Measurement and Instrumentation
Soggetto topico Computational intelligence
Internet of things
Materials
Detectors
Mechatronics
Computational Intelligence
Internet of Things
Sensors and biosensors
ISBN 9783031686023
3031686020
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Sensors ML and AI for Real World Applications -- Flying IoT Sensor Fusion Performance Analysis for UAV Applications in Indoor Spaces -- Machine Learning Empowered IoT Devices Analysis of Indoor and Outdoor Temperature and Health Risks -- Identification of IoT devices through Machine Learning and hardware fingerprints based on clock skew.
Record Nr. UNINA-9910899898903321
Pradhan Biswajeet  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Laser Scanning Systems in Highway and Safety Assessment : Analysis of Highway Geometry and Safety Using LiDAR / / by Biswajeet Pradhan, Maher Ibrahim Sameen
Laser Scanning Systems in Highway and Safety Assessment : Analysis of Highway Geometry and Safety Using LiDAR / / by Biswajeet Pradhan, Maher Ibrahim Sameen
Autore Pradhan Biswajeet
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XV, 157 p.)
Disciplina 388.10285
Collana Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
Soggetto topico Transportation engineering
Traffic engineering
Environmental management
Remote sensing
Neural networks (Computer science)
Sociophysics
Econophysics
Transportation Technology and Traffic Engineering
Environmental Management
Remote Sensing/Photogrammetry
Mathematical Models of Cognitive Processes and Neural Networks
Data-driven Science, Modeling and Theory Building
ISBN 9783030103743
3030103749
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Laser Scanning Technology -- Road Geometric Modeling Using Laser-Scanning Data -- Optimizing support vector machine and ensemble trees using the Taguchi method for automatic road network extraction -- Road Geometric Modeling Using a Novel Hierarchical Approach -- Introduction to Neural Networks -- Traffic Accidents Predictions with Neural Networks: A Review -- Applications of Deep Learning in Severity Prediction of Traffic Accidents -- Accident Modelling Using Feedforward Neural Networks -- Accident Severity Prediction with Convolutional Neural Networks -- Injury Severity Prediction Using Recurrent Neural Networks -- Improving Traffic Accident Prediction Models with Transfer Learning -- A Comparative Study between Neural Networks, Support Vector Machine, and Logistic Regression for Accident Predictions -- Estimation of Accident Factor Importance in Neural Network Models.
Record Nr. UNINA-9910366654803321
Pradhan Biswajeet  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning in Geohazard Risk Prediction and Assessment : From Microscale Analysis to Regional Mapping
Machine Learning in Geohazard Risk Prediction and Assessment : From Microscale Analysis to Regional Mapping
Autore Pradhan Biswajeet
Edizione [1st ed.]
Pubbl/distr/stampa Chantilly : , : Elsevier, , 2025
Descrizione fisica 1 online resource (377 pages)
Disciplina 550.285631
Altri autori (Persone) ShengDaichao
HeXuzhen
ISBN 0-443-23664-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover -- Machine Learning in Geohazard Risk Prediction and Assessment -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Machine learning methods and connections between different parts -- 1 Machine learning methods and their connections -- 1.1 Introduction -- 1.2 Overview of machine learning methods -- 1.2.1 Supervised learning -- 1.2.1.1 Linear regression -- 1.2.1.2 Logistic regression -- 1.2.1.3 K-nearest neighbors -- 1.2.1.4 Support vector machine -- 1.2.1.5 Decision tree -- 1.2.1.6 Random forest -- 1.2.1.7 Artificial neural network -- 1.2.1.8 Convolutional neural network -- 1.2.1.9 Recurrent neural network -- 1.2.2 Semi-supervised learning -- 1.2.2.1 Label propagation -- 1.2.2.2 Self-training -- 1.2.3 Unsupervised learning -- 1.2.3.1 K-means clustering -- 1.2.3.2 Hierarchical clustering -- 1.2.3.3 Principal component analysis -- 1.2.3.4 Autoencoder -- 1.2.4 Reinforcement learning -- 1.2.4.1 Q-learning -- 1.2.4.2 Deep Q networks -- 1.2.4.3 Policy gradients -- 1.2.5 Others -- 1.3 Performance evaluation metrics -- 1.3.1 Pearson correlation coefficient (R) -- 1.3.2 Coefficient of determination (R2) -- 1.3.3 Mean square error -- 1.3.4 Root mean square error -- 1.3.5 Mean absolute error -- 1.3.6 Mean absolute percentage error -- 1.3.7 Variance account for -- 1.4 Machine learning performance optimization techniques -- 1.4.1 Data preprocessing -- 1.4.2 Generalization enhancement -- 1.5 Optimization algorithms -- 1.5.1 Particle swarm optimization -- 1.5.2 Ant colony optimization -- 1.5.3 Bat algorithm -- 1.5.4 Grey wolf optimizer -- 1.5.5 Artificial fish swarm algorithm -- 1.5.6 Whale optimization algorithm -- 1.5.7 Genetic algorithm -- 1.5.8 Simulated annealing -- 1.6 The connections and challenges among different machine learning methods -- 1.6.1 Connections -- 1.6.2 Challenges.
1.6.3 Future development -- 1.7 Conclusion -- References -- 2 Machine learning in constitutive modelling of geo-materials -- 2 Analysis and quantitative identification of tensile and shear fractures in rocks: a review and prospect -- 2.1 Introduction -- 2.2 Method of characterizing rock fracture mechanism -- 2.2.1 Acoustic emission -- 2.2.2 Three-dimensional optical morphology scanning -- 2.2.3 Digital image correlation technique -- 2.2.4 Scanning electron microscopy -- 2.3 Quantitative identification of mesoscopic fracture mechanism -- 2.3.1 Experiment tests -- 2.3.2 SEM images acquisition -- 2.3.3 Modelling -- 2.4 Discussion -- 2.4.1 Model comparison -- 2.4.2 Model interpretation -- 2.5 Model feasibility validation -- 2.6 Conclusions -- References -- 3 Tree-based machine-learning models to estimate undrained shear strength of soft clay soils -- 3.1 Introduction -- 3.2 Undrained shear strength -- 3.3 Variable parameters -- 3.4 Gradient boosting tree and extreme gradient boosting tree -- 3.5 Data analysis -- 3.6 Results and discussion -- 3.7 Conclusion -- References -- 4 Predicting liquefaction resistance of silty sands using machine learning techniques -- 4.1 Introduction -- 4.2 Liquefaction fundamentals -- 4.2.1 Seismic hazards and liquefaction-induced damage -- 4.2.2 Understanding liquefaction -- 4.3 Mechanics of liquefaction -- 4.4 Factors Influencing ground motions -- 4.4.1 Ground failures induced by liquefaction -- 4.4.1.1 Flow failures -- 4.4.1.2 Lateral spreading -- 4.4.1.3 Ground oscillation -- 4.4.1.4 Loss of bearing capacity -- 4.5 Factors affecting liquefaction susceptibility -- 4.5.1 Grain-size distribution and soil types -- 4.5.2 Relative density -- 4.5.3 Earthquake loading characteristics -- 4.5.4 Vertical effective stress and over consolidation -- 4.5.5 Soil age and origin -- 4.5.6 Seismic strain history -- 4.5.7 Degree of saturation.
4.5.8 Thickness of sand layer -- 4.6 Methods for assessing liquefaction potential -- 4.7 Machine learning methods -- 4.7.1 Back propagation neural network -- 4.7.2 Support vector machine -- 4.7.3 Radial basis function neural network -- 4.8 Methodology -- 4.9 Conclusion -- References -- 3 Machine learning in numerical modelling of geotechnical problems -- 5 Introduction to system reliability analysis for geotechnical infrastructures -- 5.1 Introduction -- 5.2 Basic statistical concepts -- 5.2.1 Random variable -- 5.2.2 Mean of a random variable -- 5.2.3 Standard deviation of a random variable -- 5.2.4 Variance of a random variable -- 5.2.5 Independent random variables -- 5.2.6 Covariance -- 5.2.7 Correlation coefficient -- 5.2.8 Probability density function and cumulative distribution function -- 5.2.9 Probability distribution functions -- 5.2.9.1 Normal distribution function -- 5.2.9.2 Lognormal distribution function -- 5.2.9.3 Probability distribution function -- 5.2.9.4 Exponential distribution function -- 5.2.9.5 Beta distribution function -- 5.3 Reliability assessment methods -- 5.3.1 Fundamental reliability concepts -- 5.3.1.1 Central safety factor, reliability index, and probability of failure (Pf) -- 5.3.2 Monte Carlo simulation -- 5.3.3 First order reliability method -- 5.3.3.1 Illustrative example 1 -- 5.4 Series, parallel, and combined systems -- 5.4.1 Reliability of series systems -- 5.4.2 Reliability of parallel systems -- 5.4.3 Cornell bound method -- 5.4.4 Reliability of combined systems -- 5.4.5 Equivalent linear safety margin for parallel systems -- 5.4.5.1 Illustrative example 2 -- 5.5 Sequential compounding method -- 5.5.1 Compounding two components coupled by intersection -- 5.5.2 Compounding two components coupled by union -- 5.5.2.1 Illustrative example 3 -- 5.6 Summary -- 5.7 Conclusion -- References.
6 Deep learning for surrogate modeling for geotechnical risk analysis -- 6.1 Introduction -- 6.2 Stability analysis methods -- 6.2.1 Limit equilibrium method and the limit analysis method -- 6.2.2 Finite element method -- 6.3 Homogeneous slope stability -- response surface method -- 6.3.1 The Limit analysis method for slope stability analysis -- 6.3.2 A case study of slope toe failure -- 6.3.3 Stochastic analysis for slope stability by response surface method -- 6.4 Spatially variable slopes -- machine learning surrogate model -- 6.4.1 Slope stability analysis by finite element method -- 6.4.2 Stochastic slope stability analysis -- 6.4.3 Machine learning surrogate models for slope stability analysis -- 6.5 Spatially variable slopes of any geometries or material properties -- deep-learning pretrained surrogate model -- 6.5.1 Slope stability: inputs and outputs -- 6.5.2 FE models and calculation of safety factors -- 6.5.3 Deep-learning models for spatially variable slopes -- 6.5.3.1 Undrained soil with a fixed slope shape -- 6.5.3.2 Mohr-Coulomb soil with a fixed slope shape -- 6.5.3.3 The full problem -- 6.5.4 Verification and application -- 6.6 Conclusion -- 6.7 AI disclosure -- References -- 7 Physics-based deep-learning numerical methods: application to groundwater seepage and consolidation problems -- 7.1 Introduction -- 7.2 Main theories of PBDL algorithms -- 7.2.1 Principle of PINNs -- 7.2.2 Principle of PI-DeepONets -- 7.3 Numerical applications of PBDL algorithms -- 7.3.1 Forward nonlinear consolidation problem via the PINNs -- 7.3.2 Inverse unsaturated seepage problem via the PINNs -- 7.3.3 Uncertain saturated seepage problem via the PI-DeepONets -- 7.4 Conclusions -- Acknowledgments -- References -- 4 Machine learning in data-drivin geotechnical engineering -- 8 Deep learning for time series forecasting in tunneling -- 8.1 Introduction.
8.2 Data sampling -- 8.2.1 high-frequency data -- 8.2.2 Low-frequency data -- 8.2.3 Data preprocessing -- 8.3 Application in TBM operation -- 8.3.1 Forecasting TBM performance -- 8.3.1.1 High-frequency forecast -- 8.3.1.2 Low-frequency forecast -- 8.3.1.3 High-to-low forecast -- 8.3.2 Forecasting attitude and position -- 8.3.3 Forecasting tunnel collapse -- 8.4 Summary -- 8.5 Perspectives -- 8.6 AI disclosure -- References -- 9 Computational intelligence in rock engineering management systems -- 9.1 Introduction -- 9.2 Computational intelligence methods -- 9.2.1 Artificial neural network -- 9.2.2 Fuzzy logic -- 9.2.3 Metaheuristic optimization -- 9.2.4 Hybrid method -- 9.2.5 Challenges in applying computational intelligence -- 9.3 Application of computational intelligence frameworks in rock engineering management systems -- 9.3.1 Recognition and assessment of initial conditions -- 9.3.2 Monitoring and surveillance -- 9.3.3 Performance prediction and improvement -- 9.4 Conclusion -- References -- 10 Genetic programming for the prediction of tunnel face support pressure -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Tunnel face stability -- 10.2.2 Data acquisition -- 10.2.3 Genetic programming -- 10.2.4 Model set up -- 10.3 Results -- 10.3.1 Sensitivity analysis -- 10.4 Discussion -- 10.5 Conclusions -- References -- 11 Machine learning in geo-risk susceptibility mapping -- 11.1 Introduction -- 11.2 Description of study area -- 11.3 Established database -- 11.4 Methodology -- 11.4.1 Artificial neural network -- 11.4.2 Hybrid model development -- 11.4.2.1 Backtracking search algorithm -- 11.4.2.1.1 Initialization -- 11.4.2.1.2 Selection-I -- 11.4.2.1.3 Crossover -- 11.4.2.1.4 Selection-II -- 11.4.2.2 Earthworm optimization algorithm -- 11.4.3 Vortex search algorithm -- 11.4.3.1 Whale optimization algorithm (WOA) -- 11.5 Results and discussion.
11.5.1 Error analysis.
Record Nr. UNINA-9911044026103321
Pradhan Biswajeet  
Chantilly : , : Elsevier, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui