top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mining Data for Financial Applications [[electronic resource] ] : 4th ECML PKDD Workshop, MIDAS 2019, Würzburg, Germany, September 16, 2019, Revised Selected Papers / / edited by Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Stefano Pascolutti, Giovanni Ponti
Mining Data for Financial Applications [[electronic resource] ] : 4th ECML PKDD Workshop, MIDAS 2019, Würzburg, Germany, September 16, 2019, Revised Selected Papers / / edited by Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Stefano Pascolutti, Giovanni Ponti
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (IX, 133 p. 37 illus., 27 illus. in color.)
Disciplina 006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Optical data processing
Computer organization
Computers
E-commerce
Application software
Artificial Intelligence
Image Processing and Computer Vision
Computer Systems Organization and Communication Networks
Information Systems and Communication Service
e-Commerce/e-business
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-37720-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning -- Curriculum Learning in Deep Neural Networks for Financial Forecasting -- Representation Learning in Graphs for Credit Card Fraud Detection -- Firms Default Prediction with Machine Learning -- Convolutional Neural Networks, Image Recognition and Financial Time Series Forecasting -- Mining Business Relationships from Stocks and News -- Mining Financial Risk Events from News and Assessing their impact on Stocks -- Monitoring the Business Cycle with Fine-grained, Aspect-based Sentiment Extraction from News -- Multi-step Prediction of Financial Asset Return Volatility Using Parsimonious Autoregressive Sequential Model -- Big Data Financial Sentiment Analysis in the European Bond Markets -- A Brand Scoring System for Cryptocurrencies Based on Social Media Data.
Record Nr. UNISA-996418316603316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mining Data for Financial Applications : 4th ECML PKDD Workshop, MIDAS 2019, Würzburg, Germany, September 16, 2019, Revised Selected Papers / / edited by Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Stefano Pascolutti, Giovanni Ponti
Mining Data for Financial Applications : 4th ECML PKDD Workshop, MIDAS 2019, Würzburg, Germany, September 16, 2019, Revised Selected Papers / / edited by Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Stefano Pascolutti, Giovanni Ponti
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (IX, 133 p. 37 illus., 27 illus. in color.)
Disciplina 006.3
006.3 (edition:23)
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Optical data processing
Computer organization
Computers
E-commerce
Application software
Artificial Intelligence
Image Processing and Computer Vision
Computer Systems Organization and Communication Networks
Information Systems and Communication Service
e-Commerce/e-business
Computer Appl. in Social and Behavioral Sciences
ISBN 3-030-37720-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning -- Curriculum Learning in Deep Neural Networks for Financial Forecasting -- Representation Learning in Graphs for Credit Card Fraud Detection -- Firms Default Prediction with Machine Learning -- Convolutional Neural Networks, Image Recognition and Financial Time Series Forecasting -- Mining Business Relationships from Stocks and News -- Mining Financial Risk Events from News and Assessing their impact on Stocks -- Monitoring the Business Cycle with Fine-grained, Aspect-based Sentiment Extraction from News -- Multi-step Prediction of Financial Asset Return Volatility Using Parsimonious Autoregressive Sequential Model -- Big Data Financial Sentiment Analysis in the European Bond Markets -- A Brand Scoring System for Cryptocurrencies Based on Social Media Data.
Record Nr. UNINA-9910373923503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui